[en] The fish industry produces every year huge amounts of waste that represent an underutilized source of chemical richness. In this contribution, type I collagen was extracted from the scales of Mugil cephalus and carbon dots (CDs) were synthesized from the scales of Dicentrarchus labrax. These materials were combined to make hybrid films with UV-blocking ability, by casting a mixture of gelatin, glycerol (15%), and CDs (0, 1, 3, and 5%). The films were fully characterized from the mechanical, morphological, and optical point of view. Here, 40 μm thick films were obtained, characterized by a high water solubility (70%); moreover, the presence of CDs improved the film mechanical properties, in particular increasing the tensile strength (TS) up to 17 MPa and elongation at break (EAB) up to 40%. The CDs also modulated water vapor permeability and the thermal stability of the films. From the optical point of view, with just 5% loading of CDs the films blocked almost 70% of the UV radiation with negligible change in transparency (88.6% for the nonloaded vs 84.4% for 5% CDs) and opacity (1.32 for nonloaded vs 1.61 for 5% CDs). These types of hybrid biobased films hold promise for the production of sustainable UV-shields both for human health and for prolonging the shelf life of food.
Disciplines :
Chemistry
Author, co-author :
Campalani, Carlotta ; Université de Liège - ULiège > Département de chimie (sciences) > Center for Integrated Technology and Organic Synthesis ; Department of Molecular Sciences and Nanosystems, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy
Causin, Valerio; Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
Selva, Maurizio ; Department of Molecular Sciences and Nanosystems, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy
Perosa, Alvise ; Department of Molecular Sciences and Nanosystems, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy
Language :
English
Title :
Fish-Waste-Derived Gelatin and Carbon Dots for Biobased UV-Blocking Films.
We gratefully acknowledge the support from Fondazione Cariplo (Photo- and Mechano-Chemistry for the Upgrading of Agro- and Sea-food Waste to advanced polymers and nanocarbon materials, CUBWAM, project 2021-0751). Francesca Mazzolini is gratefully acknowledged for experimental assistance in the processing for the extraction of collagen from fish scales. Patrizia Canton is gratefully acknowledged for the registration of TEM and SEM micrographs. Andrea Morandini is kindly acknowledged for the gel permeation chromatography measurements on fish gelatin.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Feng, X.; Zhao, Y.; Jiang, Y.; Miao, M.; Cao, S.; Fang, J. Use of Carbon Dots to Enhance UV-Blocking of Transparent Nanocellulose Films. Carbohydr. Polym. 2017, 161, 253-260, 10.1016/j.carbpol.2017.01.030
Kumar Barman, B.; Nagao, T.; Nanda, K. K. Dual Roles of a Transparent Polymer Film Containing Dispersed N-Doped Carbon Dots: A High-Efficiency Blue Light Converter and UV Screen. Appl. Surf. Sci. 2020, 510, 145405, 10.1016/j.apsusc.2020.145405
Uthirakumar, P.; Devendiran, M.; Kim, T. H.; Lee, I. H. A Convenient Method for Isolating Carbon Quantum Dots in High Yield as an Alternative to the Dialysis Process and the Fabrication of a Full-Band UV Blocking Polymer Film. New J. Chem. 2018, 42 (22), 18312-18317, 10.1039/C8NJ04615H
Rouhi, J.; Mahmud, S.; Naderi, N.; Ooi, C. H. R.; Mahmood, M. R. Physical Properties of Fish Gelatin-Based Bio-Nanocomposite Films Incorporated with ZnO Nanorods. Nanoscale Res. Lett. 2013, 8 (1), 1-6, 10.1186/1556-276X-8-364
Tu, Y.; Zhou, L.; Jin, Y. Z.; Gao, C.; Ye, Z. Z.; Yang, Y. F.; Wang, Q. L. Transparent and Flexible Thin Films of ZnO-Polystyrene Nanocomposite for UV-Shielding Applications. J. Mater. Chem. 2010, 20 (8), 1594-1599, 10.1039/b914156a
Uthirakumar, P.; Muthulingam, S.; Khan, R.; Hyeon Yun, J.; Cho, H. S.; Lee, I. H. Surfactant-Free Synthesis of Leaf-like Hierarchical CuO Nanosheets as a UV Light Filter. Mater. Lett. 2015, 156, 191-194, 10.1016/j.matlet.2015.05.032
Aguirre, M.; Paulis, M.; Leiza, J. R. UV Screening Clear Coats Based on Encapsulated CeO2 Hybrid Latexes. J. Mater. Chem. A 2013, 1 (9), 3155-3162, 10.1039/c2ta00762b
Mallakpour, S.; Barati, A. Efficient Preparation of Hybrid Nanocomposite Coatings Based on Poly(Vinyl Alcohol) and Silane Coupling Agent Modified TiO2 Nanoparticles. Prog. Org. Coatings 2011, 71 (4), 391-398, 10.1016/j.porgcoat.2011.04.010
Wang, Y.; Li, T.; Ma, P.; Bai, H.; Xie, Y.; Chen, M.; Dong, W. Simultaneous Enhancements of UV-Shielding Properties and Photostability of Poly(Vinyl Alcohol) via Incorporation of Sepia Eumelanin. ACS Sustain. Chem. Eng. 2016, 4 (4), 2252-2258, 10.1021/acssuschemeng.5b01734
Wang, Y.; Su, J.; Li, T.; Ma, P.; Bai, H.; Xie, Y.; Chen, M.; Dong, W. A Novel UV-Shielding and Transparent Polymer Film: When Bioinspired Dopamine-Melanin Hollow Nanoparticles Join Polymers. ACS Appl. Mater. Interfaces 2017, 9 (41), 36281-36289, 10.1021/acsami.7b08763
Hai, F. I.; Yamamoto, K.; Fukushi, K. Hybrid Treatment Systems for Dye Wastewater. Crit. Rev. Environ. Sci. Technol. 2007, 37 (4), 315-377, 10.1080/10643380601174723
Sirviö, J. A.; Visanko, M.; Heiskanen, J. P.; Liimatainen, H. UV-Absorbing Cellulose Nanocrystals as Functional Reinforcing Fillers in Polymer Nanocomposite Films. J. Mater. Chem. A 2016, 4 (17), 6368-6375, 10.1039/C6TA00900J
Xie, S.; Zhao, J.; Zhang, B.; Wang, Z.; Ma, H.; Yu, C.; Yu, M.; Li, L.; Li, J. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property. ACS Appl. Mater. Interfaces 2015, 7 (32), 17558-17564, 10.1021/acsami.5b04231
Zayat, M.; Garcia-Parejo, P.; Levy, D. Preventing UV-Light Damage of Light Sensitive Materials Using a Highly Protective UV-Absorbing Coating. Chem. Soc. Rev. 2007, 36 (8), 1270-1281, 10.1039/b608888k
Maschmeyer, T.; Luque, R.; Selva, M. Upgrading of Marine (Fish and Crustaceans) Biowaste for High Added-Value Molecules and Bio(Nano)-Materials. Chem. Soc. Rev. 2020, 49 (13), 4527-4563, 10.1039/C9CS00653B
Xu, C.; Nasrollahzadeh, M.; Selva, M.; Issaabadi, Z.; Luque, R. Waste-to-Wealth: Biowaste Valorization into Valuable Bio(Nano)Materials. Chem. Soc. Rev. 2019, 48 (18), 4791-4822, 10.1039/C8CS00543E
Das, M. P.; R., S. P.; Prasad, K.; Jv, V.; M, R. Extraction and Characterization of Gelatin: A Functional Biopolymer. Int. J. Pharm. Pharm. Sci. 2017, 9 (9), 239, 10.22159/ijpps.2017v9i9.17618
Jeya Shakila, R.; Jeevithan, E.; Varatharajakumar, A.; Jeyasekaran, G.; Sukumar, D. Comparison of the Properties of Multi-Composite Fish Gelatin Films with That of Mammalian Gelatin Films. Food Chem. 2012, 135 (4), 2260-2267, 10.1016/j.foodchem.2012.07.069
Mejía-Saulés, J. E.; Waliszewski, K. N.; Garcia, M. A.; Cruz-Camarillo, R. The Use of Crude Shrimp Shell Powder for Chitinase Production by Serratia Marcescens WF. Food Technol. Biotechnol 2006, 44 (1), 95-100
Gòmez-Guìllen, M. C.; Turnay, J.; Fernàndez-Dìaz, M. D.; Ulmo, N.; Lizarbe, M. A.; Montero, P. Structure and Physical Properties of Gelatin Extracted from Different Marine Species: A Comparative Study. Food Hydrocoll 2002, 16, 25-34, 10.1016/S0268-005X(01)00035-2
Gómez-Estaca, J.; Giménez, B.; Montero, P.; Gómez-Guillén, M. C. Incorporation of Antioxidant Borage Extract into Edible Films Based on Sole Skin Gelatin or a Commercial Fish Gelatin. J. Food Eng. 2009, 92 (1), 78-85, 10.1016/j.jfoodeng.2008.10.024
Zakaria, S.; Hidayah, N.; Bakar, A. Extraction and Characterization of Gelatin from Black Tilapia (Oreochromis Niloticus) Scales and Bones. Intl. Conf. Advances in Science, Eng., Technology, Natural Resources 2015, 77-80, 10.15242/iicbe.c0815040
Cao, T. H.; Nguyen, T. T. O.; Nguyen, T. M. H.; Le, N. T.; Razumovskaya, R. G. Characteristics and Physicochemical Properties of Gelatin Extracted from Scales of Seabass (Lates Calcarifer) and Grey Mullet (Mugil Cephalus) in Vietnam. J. Aquat. Food Prod. Technol. 2017, 26 (10), 1293-1302, 10.1080/10498850.2017.1390026
Ikoma, T.; Kobayashi, H.; Tanaka, J.; Walsh, D.; Mann, S. Physical Properties of Type I Collagen Extracted from Fish Scales of Pagrus Major and Oreochromis Niloticas. Int. J. Biol. Macromol. 2003, 32 (3-5), 199-204, 10.1016/S0141-8130(03)00054-0
Wang, L.; An, X.; Yang, F.; Xin, Z.; Zhao, L.; Hu, Q. Isolation and Characterisation of Collagens from the Skin, Scale and Bone of Deep-Sea Redfish (Sebastes Mentella). Food Chem. 2008, 108 (2), 616-623, 10.1016/j.foodchem.2007.11.017
Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Structural, Morphological and Thermal Behaviour Characterisations of Fish Gelatin Film Incorporated with Basil and Citronella Essential Oils as Affected by Surfactants. Food Hydrocoll 2014, 41, 33-43, 10.1016/j.foodhyd.2014.03.015
Gómez-Guillén, M. C.; Ihl, M.; Bifani, V.; Silva, A.; Montero, P. Edible Films Made from Tuna-Fish Gelatin with Antioxidant Extracts of Two Different Murta Ecotypes Leaves (Ugni Molinae Turcz). Food Hydrocoll 2007, 21 (7), 1133-1143, 10.1016/j.foodhyd.2006.08.006
Baker, S. N.; Baker, G. A. Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chemie-Int. Ed 2010, 49 (38), 6726-6744, 10.1002/anie.200906623
Li, H.; Kang, Z.; Liu, Y.; Lee, S. T. Carbon Nanodots: Synthesis, Properties and Applications. J. Mater. Chem. 2012, 22 (46), 24230-24253, 10.1039/c2jm34690g
Cailotto, S.; Amadio, E.; Facchin, M.; Selva, M.; Pontoglio, E.; Rizzolio, F.; Riello, P.; Toffoli, G.; Benedetti, A.; Perosa, A. Carbon-Dots from Sugars and Ascorbic Acid: Role of the Precursors on Morphology, Properties, Toxicity and Drug Uptake. ACS Med. Chem. Lett. 2018, 9 (8), 832-837, 10.1021/acsmedchemlett.8b00240
Huang, S. W.; Lin, Y. F.; Li, Y. X.; Hu, C. C.; Chiu, T. C. Synthesis of Fluorescent Carbon Dots as Selective and Sensitive Probes for Cupric Ions and Cell Imaging. Molecules 2019, 24 (9), 1785, 10.3390/molecules24091785
Tuerhong, M.; XU, Y.; YIN, X. B. Review on Carbon Dots and Their Applications. Chin. J. Anal. Chem. 2017, 45 (1), 139-150, 10.1016/S1872-2040(16)60990-8
Kovalchuk, A.; Huang, K.; Xiang, C.; Martí, A. A.; Tour, J. M. Luminescent Polymer Composite Films Containing Coal-Derived Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2015, 7 (47), 26063-26068, 10.1021/acsami.5b06057
Park, S. J.; Yang, H. K.; Moon, B. K. Ultraviolet to Blue Blocking and Wavelength Convertible Films Using Carbon Dots for Interrupting Eye Damage Caused by General Lighting. Nano Energy 2019, 60, 87-94, 10.1016/j.nanoen.2019.03.043
Hess, S. C.; Permatasari, F. A.; Fukazawa, H.; Schneider, E. M.; Balgis, R.; Ogi, T.; Okuyama, K.; Stark, W. J. Direct Synthesis of Carbon Quantum Dots in Aqueous Polymer Solution: One-Pot Reaction and Preparation of Transparent UV-Blocking Films. J. Mater. Chem. A 2017, 5 (10), 5187-5194, 10.1039/C7TA00397H
Salimi, F.; Moradi, M.; Tajik, H.; Molaei, R. Optimization and Characterization of Eco-Friendly Antimicrobial Nanocellulose Sheet Prepared Using Carbon Dots of White Mulberry (Morus Alba L.). J. Sci. Food Agric 2021, 101 (8), 3439-3447, 10.1002/jsfa.10974
Javanbakht, S.; Namazi, H. Solid State Photoluminescence Thermoplastic Starch Film Containing Graphene Quantum Dots. Carbohydr. Polym. 2017, 176, 220-226, 10.1016/j.carbpol.2017.08.080
You, Y.; Zhang, H.; Liu, Y.; Lei, B. Transparent Sunlight Conversion Film Based on Carboxymethyl Cellulose and Carbon Dots. Carbohydr. Polym. 2016, 151, 245-250, 10.1016/j.carbpol.2016.05.063
Campalani, C.; Cattaruzza, E.; Zorzi, S.; Vomiero, A.; You, S.; Matthews, L.; Capron, M.; Mondelli, C.; Selva, M.; Perosa, A. Biobased Carbon Dots: From Fish Scales to Photocatalysis. Nanomaterials 2021, 11 (2), 524, 10.3390/nano11020524
Niu, L.; Zhou, X.; Yuan, C.; Bai, Y.; Lai, K.; Yang, F.; Huang, Y. Characterization of Tilapia (Oreochromis Niloticus) Skin Gelatin Extracted with Alkaline and Different Acid Pretreatments. Food Hydrocoll 2013, 33 (2), 336-341, 10.1016/j.foodhyd.2013.04.014
Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248-254, 10.1016/0003-2697(76)90527-3
Beghetto, V.; Gatto, V.; Conca, S.; Bardella, N.; Buranello, C.; Gasparetto, G.; Sole, R. Development of 4-(4,6-Dimethoxy-1,3,5-Triazin-2-Yl)-4-Methyl-Morpholinium Chloride Cross-Linked Carboxymethyl Cellulose Films. Carbohydr. Polym. 2020, 249 (April), 116810, 10.1016/j.carbpol.2020.116810
Zolfi, M.; Khodaiyan, F.; Mousavi, M.; Hashemi, M. Development and Characterization of the Kefiran-Whey Protein Isolate-TiO2 Nanocomposite Films. Int. J. Biol. Macromol. 2014, 65, 340-345, 10.1016/j.ijbiomac.2014.01.010
Hatakeyama, T.; Quinn, F. X. Thermal Analysis: Fundamentals and Applications to Polymer Science, 2nd ed.; John Wiley & Sons Ltd.: Chichester, U.K., 1999.
Duan, R.; Zhang, J.; Du, X.; Yao, X.; Konno, K. Properties of Collagen from Skin, Scale and Bone of Carp (Cyprinus Carpio). Food Chem. 2009, 112 (3), 702-706, 10.1016/j.foodchem.2008.06.020
Minh Thuy, L. T.; Okazaki, E.; Osako, K. Isolation and Characterization of Acid-Soluble Collagen from the Scales of Marine Fishes from Japan and Vietnam. Food Chem. 2014, 149, 264-270, 10.1016/j.foodchem.2013.10.094
Burjanadze, T. V. Thermodynamic Substantiation of Water-Bridged Collagen Structure. Biopolymers 1992, 32, 941-949, 10.1002/bip.360320805
Bae, I.; Osatomi, K.; Yoshida, A.; Osako, K.; Yamaguchi, A.; Hara, K. Biochemical Properties of Acid-Soluble Collagens Extracted from the Skins of Underutilised Fishes. Food Chem. 2008, 108 (1), 49-54, 10.1016/j.foodchem.2007.10.039
Hanani, Z. A. N.; Yee, F. C.; Nor-Khaizura, M. A. R. Effect of Pomegranate (Punica Granatum L.) Peel Powder on the Antioxidant and Antimicrobial Properties of Fish Gelatin Films as Active Packaging. Food Hydrocoll 2019, 89, 253-259, 10.1016/j.foodhyd.2018.10.007
Govindaswamy, R.; Robinson, J. S.; Geevaretnam, J.; Pandurengan, P. Physico-Functional and Anti-Oxidative Properties of Carp Swim Bladder Gelatin and Brown Seaweed Fucoidan Based Edible Films. J. Packag. Technol. Res. 2018, 2 (1), 77-89, 10.1007/s41783-017-0024-z
Pérez-Mateos, M.; Montero, P.; Gómez-Guillén, M. C. Formulation and Stability of Biodegradable Films Made from Cod Gelatin and Sunflower Oil Blends. Food Hydrocoll 2009, 23 (1), 53-61, 10.1016/j.foodhyd.2007.11.011
Giménez, B.; Gómez-Estaca, J.; Alemán, A.; Gómez-Guillén, M. C.; Montero, M. P. Improvement of the Antioxidant Properties of Squid Skin Gelatin Films by the Addition of Hydrolysates from Squid Gelatin. Food Hydrocoll 2009, 23 (5), 1322-1327, 10.1016/j.foodhyd.2008.09.010
Jiang, M.; Liu, S.; Du, X.; Wang, Y. Physical Properties and Internal Microstructures of Films Made from Catfish Skin Gelatin and Triacetin Mixtures. Food Hydrocoll 2010, 24 (1), 105-110, 10.1016/j.foodhyd.2009.08.011
Hoque, M. S.; Benjakul, S.; Prodpran, T. Properties of Film from Cuttlefish (Sepia Pharaonis) Skin Gelatin Incorporated with Cinnamon, Clove and Star Anise Extracts. Food Hydrocoll 2011, 25 (5), 1085-1097, 10.1016/j.foodhyd.2010.10.005
Cuq, B.; Aymard, C.; Cuq, J.-L.; Guilbert, S. Edible Packaging Films Based on Fish Myofibrillar Proteins: Formulation and Functional Properties. J. Food Sci. 1995, 60 (6), 1369-1374, 10.1111/j.1365-2621.1995.tb04593.x
Bhat, R.; Karim, A. A. Towards Producing Novel Fish Gelatin Films by Combination Treatments of Ultraviolet Radiation and Sugars (Ribose and Lactose) as Cross-Linking Agents. J. Food Sci. Technol. 2014, 51 (7), 1326-1333, 10.1007/s13197-012-0652-9
Hosseini, S. F.; Rezaei, M.; Zandi, M.; Ghavi, F. F. Preparation and Functional Properties of Fish Gelatin-Chitosan Blend Edible Films. Food Chem. 2013, 136 (3-4), 1490-1495, 10.1016/j.foodchem.2012.09.081
Lin, D.; Yang, Y.; Wang, J.; Yan, W.; Wu, Z.; Chen, H.; Zhang, Q.; Wu, D.; Qin, W.; Tu, Z. Preparation and Characterization of TiO2-Ag Loaded Fish Gelatin-Chitosan Antibacterial Composite Film for Food Packaging. Int. J. Biol. Macromol. 2020, 154, 123-133, 10.1016/j.ijbiomac.2020.03.070
Zhang, Y.; Simpson, B. K.; Dumont, M. J. Effect of Beeswax and Carnauba Wax Addition on Properties of Gelatin Films: A Comparative Study. Food Biosci 2018, 26, 88-95, 10.1016/j.fbio.2018.09.011
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.