[en] This work systematically compares both structural features and photocatalytic performance of a series of graphitic and amorphous carbon dots (CDs) prepared in a bottom-up manner from fructose, glucose, and citric acid. We demonstrate that the carbon source and synthetic procedures diversely affect the structural and optical properties of the CDs, which in turn unpredictably influence their photo electron transfer ability. The latter was evaluated by studying the photo-reduction of methyl viologen. Overall, citric acid-CDs were found to provide the best photocatalytic performance followed by fructose- and glucose-CDs. However, while the graphitization of glucose- and citric acid-CDs favored the photo-reaction, a reverse structure-activity dependence was observed for fructose-CDs due to the formation of a large graphitic-like supramolecular assembly. This study highlights the complexity to design in advance photo-active bio-based carbon nanomaterials.
Disciplines :
Chemistry
Author, co-author :
Amadio, Emanuele; Department of Molecular Sciences and Nanosystems, Ca' Foscari university of Venice, 30172 Venezia Mestre, Italy
Cailotto, Simone ; Department of Molecular Sciences and Nanosystems, Ca' Foscari university of Venice, 30172 Venezia Mestre, Italy
Campalani, Carlotta ; Université de Liège - ULiège > Département de chimie (sciences) > Center for Integrated Technology and Organic Synthesis ; Department of Molecular Sciences and Nanosystems, Ca' Foscari university of Venice, 30172 Venezia Mestre, Italy
Branzi, Lorenzo; Department of Molecular Sciences and Nanosystems, Ca' Foscari university of Venice, 30172 Venezia Mestre, Italy
Raviola, Carlotta ; PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100 Pavia, Italy
Ravelli, Davide ; PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100 Pavia, Italy
Cattaruzza, Elti ; Department of Molecular Sciences and Nanosystems, Ca' Foscari university of Venice, 30172 Venezia Mestre, Italy
Trave, Enrico; Department of Molecular Sciences and Nanosystems, Ca' Foscari university of Venice, 30172 Venezia Mestre, Italy
Benedetti, Alvise ; Department of Molecular Sciences and Nanosystems, Ca' Foscari university of Venice, 30172 Venezia Mestre, Italy
Selva, Maurizio ; Department of Molecular Sciences and Nanosystems, Ca' Foscari university of Venice, 30172 Venezia Mestre, Italy
Perosa, Alvise ; Department of Molecular Sciences and Nanosystems, Ca' Foscari university of Venice, 30172 Venezia Mestre, Italy
Language :
English
Title :
Precursor-Dependent Photocatalytic Activity of Carbon Dots.
Chen, B.; Li, F.; Li, S.; Weng, W.; Guo, H.; Guo, T.; Zhang, X.; Chen, Y.; Huang, T.; Hong, X.; et al. Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale 2013, 5, 1967. [CrossRef] [PubMed]
Cailotto, S.; Amadio, E.; Facchin, M.; Selva, M.; Pontoglio, E.; Rizzolio, F.; Riello, P.; Tooli, G.; Benedetti, A.; Perosa, A. Carbon Dots from Sugars and Ascorbic Acid: Role of the Precursors on Morphology, Properties, Toxicity, and Drug Uptake. ACS Med. Chem. Lett. 2018, 9, 832-837. [CrossRef] [PubMed]
Pardo, J.; Peng, Z.; Leblanc, R. M. Cancer Targeting and Drug Delivery Using Carbon-Based Quantum Dots and Nanotubes. Molecules 2018, 23, 378. [CrossRef] [PubMed]
Huang, S.-W.; Lin, Y.-F.; Li, Y.-X.; Hu, C.-C.; Chiu, T.-C. Synthesis of Fluorescent Carbon Dots as Selective and Sensitive Probes for Cupric Ions and Cell Imaging. Molecules 2019, 24, 1785. [CrossRef] [PubMed]
Garg, B.; Bisht, T. Carbon Nanodots as Peroxidase Nanozymes for Biosensing. Molecules 2016, 21, 1653. [CrossRef]
Tuerhong, M.; Xu, Y.; Yin, X.-B. Review on Carbon Dots and Their Applications. Chin. J. Anal. Chem. 2017, 45, 139-150. [CrossRef]
Chandra, S.; Patra, P.; Pathan, S. H.; Roy, S.; Mitra, S.; Layek, A.; Bhar, R.; Pramanik, P.; Goswami, A. Luminescent S-doped carbon dots: An emergent architecture for multimodal applications. J. Mater. Chem. B 2013, 1, 2375. [CrossRef]
Hutton, G. A. M.; Martindale, B. C. M.; Reisner, E. Carbon dots as photosensitisers for solar-driven catalysis. Chem. Soc. Rev. 2017, 46, 6111-6123. [CrossRef]
Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Reisner, E. Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst. J. Am. Chem. Soc. 2015, 137, 6018-6025. [CrossRef]
Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Prantl, S.; Godin, R.; Durrant, J. R.; Reisner, E. Enhancing Light Absorption and Charge Transfer Effciency in Carbon Dots through Graphitization and Core Nitrogen Doping. Angew. Chem. Int. Ed. 2017, 56, 6459-6463. [CrossRef]
Han, M.; Zhu, S.; Lu, S.; Song, Y.; Feng, T.; Tao, S.; Liu, J.; Yang, B. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today 2018, 19, 201-218. [CrossRef]
Wang, R.; Lu, K.-Q.; Tang, Z.-R.; Xu, Y.-J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717-3734. [CrossRef]
Shi, L.; Yang, J.; Zeng, H. B.; Chen, Y. M.;Wu, C.; Osada, Y.; Zhang, Q. Q. Carbon dots with high fluorescent quantum yield: The fluorescence originates from organic fluorophores. Nanoscale 2016, 8, 14374-14378. [CrossRef] [PubMed]
Wang, S.; Chen, Z.-G.; Cole, I.; Li, Q. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon 2015, 82, 304-313. [CrossRef]
Krysmann, M. J.; Kelarakis, A.; Dallas, P.; Giannelis, E. P. Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission. J. Am. Chem. Soc. 2012, 134, 747-750. [CrossRef] [PubMed]
Song, Y.; Zhu, S.; Zhang, S.; Fu, Y.; Wang, L.; Zhao, X.; Yang, B. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 2015, 3, 5976-5984. [CrossRef]
Gharat, P. M.; Chethodil, J. M.; Srivastava, A. P.; Praseetha, P. K.; Pal, H.; Choudhury, S. D. An insight into the molecular and surface state photoluminescence of carbon dots revealed through solvent-induced modulations in their excitation wavelength dependent emission properties. Photochem. Photobiol. Sci. 2019, 18, 110-119. [CrossRef]
Ren, W.-J.; Bai, J.-J.; Zhao, Y.-L.; Wang, Y.-L.; Liu, F.; Li, Z.-Z. One-pot synthesis of carbon dots co-doped with N and S: High quantum yield governed by molecular state and fluorescence detection of Ag+. Mol. Phys. 2019, 117, 2500-2510. [CrossRef]
Rodriguez-Padron, D.; Algarra, M.; Tarelho, L. A. C.; Frade, J. R.; Franco, A.; De Miguel, G.; Jimenez, J.; Rodríguez-Castellón, E.; Luque, R. Catalyzed Microwave-Assisted Preparation of Carbon Quantum Dots from Lignocellulosic Residues. ACS Sustain. Chem. Eng. 2018, 6, 7200-7205. [CrossRef]
Fang, Q.; Dong, Y.; Chen, Y.; Lu, C.-H.; Chi, Y.; Yang, H.-H.; Yu, T. Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules. Carbon 2017, 118, 319-326. [CrossRef]
Rigodanza, F.; orevíc, L.; Arcudi, F.; Prato, M.; Dordevich, L. Customizing the Electrochemical Properties of Carbon Nanodots by Using Quinones in Bottom-Up Synthesis. Angew. Chem. Int. Ed. 2018, 57, 5062-5067. [CrossRef] [PubMed]
Calmanti, R.; Galvan, M.; Amadio, E.; Perosa, A.; Selva, M. High-Temperature Batch and Continuous-Flow Transesterification of Alkyl and Enol Esters with Glycerol and Its Acetal Derivatives. ACS Sustain. Chem. Eng. 2018, 6, 3964-3973. [CrossRef]
Amadio, E.; Di Lorenzo, R.; Zonta, C.; Licini, G. M. Vanadium catalyzed aerobic carbon-carbon cleavage. Coord. Chem. Rev. 2015, 301, 147-162. [CrossRef]
Fiorani, G.; Perosa, A.; Selva, M. Dimethyl carbonate: A versatile reagent for a sustainable valorization of renewables. Green Chem. 2018, 20, 288-322. [CrossRef]
Cattelan, L.; Yuen, A. K. L.; Lui, M. Y.; Masters, A. F.; Selva, M.; Perosa, A.; Maschmeyer, T. Renewable Aromatics from Kraft Lignin with Molybdenum-Based Catalysts. Chem. Cat. Chem. 2017, 9, 2717-2726. [CrossRef]
Cailotto, S.; Mazzaro, R.; Enrichi, F.; Vomiero, A.; Selva, M.; Cattaruzza, E.; Cristofori, D.; Amadio, E.; Perosa, A. Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Appl. Mater. Interfaces 2018, 10, 40560-40567. [CrossRef]
Huang, X.; Duan, H.; Barringer, S. A. Effects of buffer and temperature on formation of furan, acetic acid and formic acid from carbohydrate model systems. LWT 2011, 44, 1761-1765. [CrossRef]
Striepe, L.; Baumgartner, T. Viologens and Their Application as Functional Materials. Chem. Eur. J. 2017, 23, 16924-16940. [CrossRef]