Characterization of physicochemical properties and techno-economic analysis of cellulose nanocrystals derived from pilot production of sweet potato residue
Zhu, Shunshun; Sun, Hongnan; Mu, Taihuaet al.
2025 • In Sustainable Materials and Technologies, 43, p. 01232
[en] Cellulose nanocrystals (CNCs) have attracted great interest because of the unique structural characteristics and physical and chemical properties, but their high cost limited the application. The purpose of this study was to achieve the pilot-scale production of cellulose and CNCs by using sweet potato residue (SPR) as the main raw material. Meanwhile, based on the process of preparing CNCs from commercial acid hydrolyzed wood, a systematic economic benefit comparison was conducted on the production of CNCs from SPR. The results showed that the degree of polymerization of the cellulose produced was 475. CNCs was produced from SPR cellulose, and the CNCs had a rod-like structure, with the diameter and length ranging from 15.10 to 30.90 nm and 80.80–259.90 nm respectively. CNCs was a type I cellulose structure with high crystallinity, and the introduction of the amine characteristic peak (1665 cm−1) proved the successful production of CNCs. The maximum thermal degradation temperature of CNCs was 347.88 °C, and the zeta potential was −40.07 mV, which made it suitable for use as a reinforcing material in environmental protection bio-composites. The total capital investment to produce commercial CNCs was $227.74 million, while the total capital investment for CNCs from SPR was $203.34 million. Compared with commercial CNCs, the trial production of CNCs was more financially profitable and its net present value was higher. The use of SPR had both economic and environmental benefits, reducing the use of fossil fuels. These results are helpful in guiding the high-value utilization of other agricultural by-products and the further development of CNCs composites.
Disciplines :
Chemistry
Author, co-author :
Zhu, Shunshun ; Université de Liège - ULiège > TERRA Research Centre
Sun, Hongnan; Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
Mu, Taihua; Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
Richel, Aurore ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Language :
English
Title :
Characterization of physicochemical properties and techno-economic analysis of cellulose nanocrystals derived from pilot production of sweet potato residue
Publication date :
April 2025
Journal title :
Sustainable Materials and Technologies
ISSN :
2214-9937
Publisher :
Elsevier BV
Volume :
43
Pages :
e01232
Peer reviewed :
Peer reviewed
Development Goals :
9. Industry, innovation and infrastructure 12. Responsible consumption and production
Priya, A.K., Alagumalai, A., Balaji, D., Song, H., Bio-based agricultural products: a sustainable alternative to agrochemicals for promoting a circular economy. RSC Sustainability, 1, 2023, 10.1039/d3su00075c.
Li, J., Wang, Z., Wang, P., Tian, J., Liu, T., Guo, J., Zhu, W., Khan, M.R., Xiao, H., Song, J., Effects of hydrolysis conditions on the morphology of cellulose II nanocrystals (CNC-II) derived from mercerized microcrystalline cellulose. Int. J. Biol. Macromol., 258, 2024, 10.1016/j.ijbiomac.2023.128936.
Upadhyay, S.K., Singh, G., Rani, N., Rajput, V.D., Seth, C.S., Dwivedi, P., Minkina, T., Wong, M.H., Show, P.L., Khoo, K.S., Transforming bio-waste into value-added products mediated microbes for enhancing soil health and crop production: perspective views on circular economy. Environ. Technol. Innov., 103573, 2024, 10.1016/j.eti.2024.103573.
John, M.J., Lefatle, M.C., Sithole, B., Lignin fractionation and conversion to bio-based functional products. Sustain. Chem. Pharm., 25, 2022, 10.1016/j.scp.2021.100594.
Yaashikaa, P.R., Senthil Kumar, P., Varjani, S., Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: a critical review. Bioresour. Technol., 343, 2022, 10.1016/j.biortech.2021.126126.
Zou, X., Dai, K., Zhang, M., Zhang, R., Jia, X., Dong, L., Ma, Q., Liang, S., Wang, Z., Deng, M., Huang, F., Dietary fiber from sweet potato residue with different processing methods: physicochemical, functional properties, and bioactivity in vitro. LWT, 206, 2024, 10.1016/j.lwt.2024.116581.
Zhu, L., Mu, T., Ma, M., Sun, H., Zhao, G., Nutritional composition, antioxidant activity, volatile compounds, and stability properties of sweet potato residues fermented with selected lactic acid bacteria and bifidobacteria. Food Chem., 374, 2022, 10.1016/j.foodchem.2021.131500.
Tang, L., Wang, B., Bai, S., Fan, B., Zhang, L., Wang, F., Preparation and characterization of cellulose nanocrystals with high stability from okara by green solvent pretreatment assisted TEMPO oxidation. Carbohydr. Polym., 324, 2024, 10.1016/j.carbpol.2023.121485.
Liu, Y., Li, X., Li, Y., Xu, H., Liu, R., Zhang, Y., Zhang, Z., Yuan, Y., Zong, L., Zhou, L., Zhang, J., Oxidation with potassium ferrate for the one-pot preparation of carboxylated cellulose II nanocrystals. Carbohydr. Polym., 329, 2024, 10.1016/j.carbpol.2024.121796.
Kushwaha, J., Singh, R., Cellulose hydrogel and its derivatives: a review of application in heavy metal adsorption. Inorg. Chem. Commun., 152, 2023, 10.1016/j.inoche.2023.110721.
Yu, S., Budtova, T., Creating and exploring carboxymethyl cellulose aerogels as drug delivery devices. Carbohydr. Polym., 332, 2024, 10.1016/j.carbpol.2024.121925.
Ramakrishnan, R., Kim, J.T., Roy, S., Jayakumar, A., Recent advances in carboxymethyl cellulose-based active and intelligent packaging materials: a comprehensive review. Int. J. Biol. Macromol., 259, 2024, 10.1016/j.ijbiomac.2023.129194.
Rajnish, K.N., Samuel, M.S., John, A., Datta, S., Chandrasekar, N., Balaji, R., Jose, S., Selvarajan, E., Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review. Int. J. Biol. Macromol., 182, 2021, 10.1016/j.ijbiomac.2021.05.176.
De France, K.J., Hoare, T., Cranston, E.D., Review of hydrogels and aerogels containing Nanocellulose. Chem. Mater., 29, 2017, 10.1021/acs.chemmater.7b00531.
Zhu, S., Sun, H., Mu, T., Li, Q., Richel, A., Preparation of cellulose nanocrystals from purple sweet potato peels by ultrasound-assisted maleic acid hydrolysis. Food Chem., 403, 2023, 10.1016/j.foodchem.2022.134496.
Zhang, Y., Zhang, Y., Xu, W., Wu, H., Shao, Y., Han, X., Zhou, M., Gu, P., Li, Z., Preparation methods of cellulose nanocrystal and its application in treatment of environmental pollution: a mini-review. Colloids and Interface SCI, 53, 2023, 10.1016/j.colcom.2023.100707.
Zhang, Y., Pu, Y., Jiang, H., Chen, L., Shen, C., Zhang, W., Cao, J., Jiang, W., Improved sustained-release properties of ginger essential oil in a Pickering emulsion system incorporated in sodium alginate film and delayed postharvest senescence of mango fruits. Food Chem., 435, 2024, 10.1016/j.foodchem.2023.137534.
Babakhani, A., Peighambardoust, S.J., Olad, A., Fabrication of magnetic nanocomposite scaffolds based on polyvinyl alcohol-chitosan containing hydroxyapatite and clay modified with graphene oxide: evaluation of their properties for bone tissue engineering applications. J. Mech. Behav. Biomed. Mater., 150, 2024, 10.1016/j.jmbbm.2023.106263.
Moradi, E., Fathi, M., Production of cellulose nanocrystals from tomato pomace as a food waste and their application for stabilizing of Pickering emulsions. Bioact. Carbohydr. Diet. Fibre, 30, 2023, 10.1016/j.bcdf.2023.100378.
Abdel-Hakim, A., Mourad, R., Nanocellulose and its polymer composites: preparation, characterization, and applications. Russ. Chem. Rev., 92, 2023, 10.57634/rcr5076.
Douard, L., Bras, J., Encinas, T., Belgacem, M.N., Natural acidic deep eutectic solvent to obtain cellulose nanocrystals using the design of experience approach. Carbohydr. Polym., 252, 2021, 10.1016/j.carbpol.2020.117136.
Soeiro, V.S., Tundisi, L.L., Novaes, L.C.L., Mazzola, P.G., Aranha, N., Grotto, D., Júnior, J.M.O., Komatsu, D., Gama, F.M.P., Chaud, M.V., Jozala, A.F., Production of bacterial cellulose nanocrystals via enzymatic hydrolysis and evaluation of their coating on alginate particles formed by ionotropic gelation. Carbohydrate Polymer Technologies and Applications, 2, 2021, 10.1016/j.carpta.2021.100155.
Fernandes, A., Cruz-Lopes, L., Esteves, B., Evtuguin, D., Nanotechnology applied to cellulosic materials. Materials, 16, 2023, 10.3390/ma16083104.
Surov, O.V., Afineevskii, A.V., Voronova, M.I., Sulfuric acid alcoholysis as a way to obtain cellulose nanocrystals. Cellulose, 30, 2023, 10.1007/s10570-023-05470-8.
Liu, A., Wu, H., Naeem, A., Du, Q., Ni, B., Liu, H., Li, Z., Ming, L., Cellulose nanocrystalline from biomass wastes: An overview of extraction, functionalization and applications in drug delivery. Int. J. Biol. Macromol., 241, 2023, 10.1016/j.ijbiomac.2023.124557.
Mokhena, T.C., John, M.J., Cellulose nanomaterials: new generation materials for solving global issues. Cellulose, 27, 2020, 10.1007/s10570-019-02889-w.
Reid, M.S., Villalobos, M., Cranston, E.D., Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir, 33, 2017, 10.1021/acs.langmuir.6b03765.
Dong, S., Bortner, M.J., Roman, M., Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind. Crop. Prod., 93, 2016, 10.1016/j.indcrop.2016.01.048.
Rajendran, N., Han, J., Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels. Bioresour. Technol., 348, 2022, 10.1016/j.biortech.2022.126796.
de Assis, C.A., Houtman, C., Phillips, R., Bilek, E.M.T., Rojas, O.J., Pal, L., Peresin, M.S., Jameel, H., Gonzalez, R., Conversion economics of forest biomaterials: risk and financial analysis of cnc manufacturing. Biofuels Bioprod. Biorefin. 11 (2017), 682–700, 10.1002/bbb.1782.
Rajendran, N., Runge, T., Bergman, R.D., Nepal, P., Houtman, C., Techno-economic analysis and life cycle assessment of cellulose nanocrystals production from wood pulp. Bioresour. Technol., 377, 2023, 10.1016/j.biortech.2023.128955.
Ma, M., Mu, T., Sun, H., Zhang, M., Chen, J., Yan, Z., Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.). Food Chem. 179 (2015), 270–277, 10.1016/j.foodchem.2015.01.136.
Malešič, J., Kraševec, I., Cigić, I.K., Determination of cellulose degree of polymerization in historical papers with high lignin content. Polymers (Basel), 13, 2021, 10.3390/polym13121990.
Pawcenis, D., Leśniak, M., Szumera, M., Sitarz, M., Profic-Paczkowska, J., Effect of hydrolysis time, pH and surfactant type on stability of hydrochloric acid hydrolyzed nanocellulose. Int. J. Biol. Macromol., 222, 2022, 10.1016/j.ijbiomac.2022.09.289.
Yuan, Y., Zhang, S., Ma, M., Wang, D., Xu, Y., Encapsulation and delivery of curcumin in cellulose nanocrystals nanoparticles using pH-driven method. LWT, 155, 2022, 10.1016/j.lwt.2021.112863.
Xu, Z., Peng, S., Zhou, G., Xu, X., Highly hydrophobic, homogeneous suspension and resin by graft copolymerization modification of cellulose nanocrystal (Cnc). J. Comp. Sci., 4, 2020, 10.3390/jcs4040186.
Rajendran, N., Han, J., Integrated polylactic acid and biodiesel production from food waste: process synthesis and economics. Bioresour. Technol., 343, 2022, 10.1016/j.biortech.2021.126119.
Rajendran, N., Han, J., Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels. Bioresour. Technol., 348, 2022, 10.1016/j.biortech.2022.126796.
Rosales-Calderon, O., Pereira, B., Arantes, V., Economic assessment of the conversion of bleached eucalyptus Kraft pulp into cellulose nanocrystals in a stand-alone facility via acid and enzymatic hydrolysis. Biofuels Bioprod. Biorefin. 15 (2021), 1775–1788, 10.1002/bbb.2277.
Ren, H., Xu, Z., Gao, M., Xing, X., Ling, Z., Pan, L., Tian, Y., Zheng, Y., Fan, W., Yang, W., Preparation of microcrystalline cellulose from agricultural residues and their application as polylactic acid/microcrystalline cellulose composite films for the preservation of Lanzhou lily. Int. J. Biol. Macromol., 227, 2023, 10.1016/j.ijbiomac.2022.12.198.
Liu, X., Sun, H., Mu, T., Fauconnier, M.L., Li, M., Preparation of cellulose nanofibers from potato residues by ultrasonication combined with high-pressure homogenization. Food Chem., 413, 2023, 10.1016/j.foodchem.2023.135675.
Mattonai, M., Pawcenis, D., del Seppia, S., Łojewska, J., Ribechini, E., Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose. Bioresour. Technol., 270, 2018, 10.1016/j.biortech.2018.09.029.
Xie, Y., Liu, H., Li, Y., Tian, J., Qin, X., Shabani, K.I., Liao, C., Liu, X., Characterization of Pickering emulsions stabilized by OSA-modified sweet potato residue cellulose: effect of degree of substitute and concentration. Food Hydrocoll., 108, 2020, 10.1016/j.foodhyd.2020.105915.
Zhou, J., Fang, Z., Chen, K., Cui, J., Yang, D., Qiu, X., Improving the degree of polymerization of cellulose nanofibers by largely preserving native structure of wood fibers. Carbohydr. Polym., 296, 2022, 10.1016/j.carbpol.2022.119919.
Gopi, S., Amalraj, A., Jude, S., Thomas, S., Guo, Q., Bionanocomposite films based on potato, tapioca starch and chitosan reinforced with cellulose nanofiber isolated from turmeric spent. J. Taiwan Inst. Chem. Eng., 96, 2019, 10.1016/j.jtice.2019.01.003.
Haddis, D.Z., Chae, M., Asomaning, J., Bressler, D.C., Evaluation of steam explosion pretreatment on the cellulose nanocrystals (CNCs) yield from poplar wood. Carbohydr. Polym., 323, 2024, 10.1016/j.carbpol.2023.121460.
Tang, L., Wang, B., Bai, S., Fan, B., Zhang, L., Wang, F., Preparation and characterization of cellulose nanocrystals with high stability from okara by green solvent pretreatment assisted TEMPO oxidation. Carbohydr. Polym., 324, 2024, 10.1016/j.carbpol.2023.121485.
Wu, Q., Ding, C., Wang, B., Rong, L., Mao, Z., Feng, X., Green, chemical-free, and high-yielding extraction of nanocellulose from waste cotton fabric enabled by electron beam irradiation. Int. J. Biol. Macromol., 267, 2024, 10.1016/j.ijbiomac.2024.131461.
Shang, Z., An, X., Seta, F.T., Ma, M., Shen, M., Dai, L., Liu, H., Ni, Y., Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals. Carbohydr. Polym., 222, 2019, 10.1016/j.carbpol.2019.115037.
Sadare, O.O., Nkosi, N.A., Moothi, K., Preparation and characterization of hexadecyl trimethyl ammonium bromide (HDTMA-Br)-modified cellulose nanocrystals (CNCs) derived from south African waste agricultural residue (corncobs). Mater Today Proc, 2023, 10.1016/j.matpr.2023.09.043.
Lu, S., Ma, T., Hu, X., Zhao, J., Liao, X., Song, Y., Hu, X., Facile extraction and characterization of cellulose nanocrystals from agricultural waste sugarcane straw. J. Sci. Food Agric., 102, 2022, 10.1002/jsfa.11360.
Zhao, G., Du, J., Chen, W., Pan, M., Chen, D., Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: rice straw and poplar wood. Cellulose, 26, 2019, 10.1007/s10570-019-02683-8.
Wang, L., Li, Y., Ye, L., Zhi, C., Zhang, T., Miao, M., Unveiling structure and performance of tea-derived cellulose nanocrystals. Int. J. Biol. Macromol., 270, 2024, 10.1016/j.ijbiomac.2024.132117.
Torlopov, M.A., Martakov, I.S., Mikhaylov, V.I., Cherednichenko, K.A., Sitnikov, P., Synthesis and properties of thiol-modified CNC via surface tosylation. Carbohydr. Polym., 319, 2023, 10.1016/j.carbpol.2023.121169.
Zhao, S., Wang, Z., Kang, H., Zhang, W., Li, J., Zhang, S., Li, L., Huang, A., Construction of bioinspired organic-inorganic hybrid composite by cellulose-induced interfacial gelation assisted with Pickering emulsion template. Chem. Eng. J. 359 (2019), 275–284, 10.1016/j.cej.2018.11.126.
Wang, Z., Yao, Z., Zhou, J., He, M., Jiang, Q., Li, S., Ma, Y., Liu, M., Luo, S., Isolation and characterization of cellulose nanocrystals from pueraria root residue. Int. J. Biol. Macromol., 129, 2019, 10.1016/j.ijbiomac.2018.07.055.
Wang, L., Li, Y., Ye, L., Zhi, C., Zhang, T., Miao, M., Unveiling structure and performance of tea-derived cellulose nanocrystals. Int. J. Biol. Macromol., 270, 2024, 10.1016/j.ijbiomac.2024.132117.
Deng, W., Zhang, Y., Wu, M., Liu, C., Rahmaninia, M., Tang, Y., Li, B., A tough, stretchable, adhesive and electroconductive polyacrylamide hydrogel sensor incorporated with sulfonated nanocellulose and carbon nanotubes. Int. J. Biol. Macromol., 279, 2024, 10.1016/j.ijbiomac.2024.135165.
Jiang, H., Wu, S., Zhou, J., Preparation and modification of nanocellulose and its application to heavy metal adsorption: a review. Int. J. Biol. Macromol., 236, 2023, 10.1016/j.ijbiomac.2023.123916.
Babaei-Ghazvini, A., Acharya, B., The effects of aspect ratio of cellulose nanocrystals on the properties of all CNC films: tunicate and wood CNCs. Carbohydrate Polymer Technologies and Applications, 5, 2023, 10.1016/j.carpta.2023.100311.
Agbakoba, V.C., Hlangothi, P., Andrew, J., John, M.J., Preparation of cellulose nanocrystal (CNCs) reinforced polylactic acid (PLA) bionanocomposites filaments using biobased additives for 3D printing applications. Nanoscale Adv, 5, 2023, 10.1039/d3na00281k.
Thulasisingh, A., Kannaiyan, S., Pichandi, K., Cellulose nanocrystals from orange and lychee biorefinery wastes and its implementation as tetracycline drug transporter. Biomass Convers. Biorefinery, 13, 2023, 10.1007/s13399-020-01168-0.
Yang, J., Zhong, F., Liu, F., Properties of sodium alginate-based nanocomposite films: effects of aspect ratio and surface charge of cellulose nanocrystals. Int. J. Biol. Macromol., 256, 2024, 10.1016/j.ijbiomac.2023.128420.
Claro, A.M., Dias, I.K.R., Fontes, M. de L., Colturato, V.M.M., Lima, L.R., Sávio, L.B., Berto, G.L., Arantes, V., Barud, H. da S., Bacterial cellulose nanocrystals obtained through enzymatic and acidic routes: a comparative study of their main properties and in vitro biological responses. Carbohydr. Res., 539, 2024, 10.1016/j.carres.2024.109104.
Lv, Y., Liang, Z., Li, Y., Chen, Y., Liu, K., Yang, G., Liu, Y., Lin, C., Ye, X., Shi, Y., Liu, M., Efficient adsorption of diclofenac sodium in water by a novel functionalized cellulose aerogel. Environ. Res., 194, 2021, 10.1016/j.envres.2020.110652.
Cheng, Y.T., Xia, Q., Liu, H., Solomon, M.B., Ling, C.D., Müllner, M., Polymer brush-grafted cellulose nanocrystals for the synthesis of porous carbon-coated titania nanocomposites. Polym. Chem., 14, 2023, 10.1039/d3py00194f.
Naveenkumar, R., Baskar, G., Optimization and techno-economic analysis of biodiesel production from Calophyllum inophyllum oil using heterogeneous nanocatalyst. Bioresour. Technol., 315, 2020, 10.1016/j.biortech.2020.123852.