[en] Entomopathogenic nematodes (EPNs) have emerged as a promising tool for controlling soil-dwelling crop pests. However, their efficacy varies according to EPN populations and targeted hosts. Wireworms are polyphagous insects causing significant crop losses, especially since the ban on pesticides previously used for their control. They are highly resistant to EPN populations and require high number of infective juveniles (IJs) to achieve optimal mortality rates. In this research, we collected and compared the virulence of 16 EPN populations, of foreign origin, purchased or collected from wireworms infested fields. Then, we have tested two hypotheses: (i) smaller nematodes induce heightened mortality rates against wireworms; (ii) virulence levels can be linked to nematodes-bacteria complex. Mortality rates scaled from three to 43 % after 56 days of continuous exposure across the 16 tested EPN populations (Heterorhabditis spp. and Steinernema spp.). Morphometric analysis of IJs revealed both intra- and interspecific variations in length and diameter among populations. Interestingly, while EPN length influence mortality at three days post-inoculation. We found leaner IJs (< 25 µm) to induce higher mortality rates at 56 days post-inoculation. To better determine the structure and dimensions of the primary entry routes utilized by EPNs, we provide optical microscope micrographs of wireworm Agriotes spp. spiracle, anal sclerotized coating anus and anal muscles. Symbiotic bacteria of each EPN population were identified, and a biochemical characterization was performed using Analytical Profile Index tests. The symbiotic bacteria belong to the species Photorhabdus antumapuensis, P. laumondii subsp. laumondii, P. thracensis, Xenorhabdus bovienii and X. nematophila. Bacteria biochemical profiles did not reflect the differences in virulence of nematodes-bacteria complex against wireworms. These findings highlight the importance of considering EPN morphometry and intraspecific variability in designing applications to control wireworms.
Disciplines :
Agriculture & agronomy
Author, co-author :
Chacon Hurtado, Jeimy Andréa ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Ruhland, Fanny ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Drabo, Salimata; Chemical and Behavioral Ecology, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie 2B, Gembloux, 5030, Belgium
Smeets, Thibaut; Chemical and Behavioral Ecology, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie 2B, Gembloux, 5030, Belgium
Checconi, Brice; Chemical and Behavioral Ecology, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie 2B, Gembloux, 5030, Belgium
Campos-Herrera, Raquel; Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20 - salida 13), 26007 Logroño, Spain
Verheggen, François ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Language :
English
Title :
To be a good killer: Evaluation of morphometry and nematodes-bacteria complex effect on entomopathogenic nematodes virulence against wireworms.
Publication date :
12 November 2024
Journal title :
Journal of Invertebrate Pathology
ISSN :
0022-2011
eISSN :
1096-0805
Publisher :
Academic Press Inc., United States
Special issue title :
Leveraging advances in entomopathogenic nematode ecology toward improved biocontrol
FRIA - Fund for Research Training in Industry and Agriculture
Funding number :
FRIA/FC-2576 FC46977
Funding text :
The authors thank Dr Patrick Fickers and Sebastien Steels for the guidance and laboratory access for molecular identification (laboratory of Microbial Processes and Interactions, Gembloux Agro-Bio Tech). Dr. Philippe Maesen and Virginie Byttebier to advice in the realization of biochemical test (Chemistry for Sustainable Food and Environmental Systems). Dr. Fernando Garc\u00EDa del Pino (Autonomous University of Barcelona) and Dr. Carlos Castaneda-Alvarez (University of Chile) for providing EPN populations. Dr Carlos Molina for providing e-nema populations. Julie Bonnet for her hard work during field collection, rearing and bioassays conduction. Dr. Yves Brostaux for his valuable advice on statistical analyses. The anonymous reviewers for their helpful feedback. This work was supported by Erasmus mundus grants: Brice Checconi (IN221021) and Salimata Drabo (FAMIENS01). Andrea Chacon Hurtado was awarded an FRIA grant (Fund for research training in industry and agriculture, FRIA/FC-2576 FC46977) to achieve a PhD thesis. Fanny Ruhland is supported by Attrack-and-kill Wallonia project (D65-1401/S1, Belgium). Raquel Campos-Herrera collaborated under the frame of the Grant PID2022-136487OB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and, by \u201CERDF A way of making Europe\u201D.The authors thank Dr Patrick Fickers and Sebastien Steels for the guidance and laboratory access for molecular identification (laboratory of Microbial Processes and Interactions, Gembloux Agro-Bio Tech ). Dr. Philippe Maesen and Virginie Byttebier to advice in the realization of biochemical test (Chemistry for Sustainable Food and Environmental Systems). Dr. Fernando Garc\u00EDa del Pino ( Autonomous University of Barcelona ) and Dr. Carlos Castaneda-Alvarez ( University of Chile ) for providing EPN populations. Dr Carlos Molina for providing e-nema populations. Julie Bonnet for her hard work during field collection, rearing and bioassays conduction. Dr. Yves Brostaux for his valuable advice on statistical analyses. The anonymous reviewers for their helpful feedback. This work was supported by Erasmus mundus grants: Brice Checconi ( IN221021 ) and Salimata Drabo ( FAMIENS01 ). Andrea Chacon Hurtado was awarded an F.R.I.A grant (Fund for research training in industry and agriculture) to achieve a PhD thesis. Fanny Ruhland is supported by Attrack-and-kill Wallonia project ( D65-1401/S1 , Belgium). Raquel Campos-Herrera collaborated under the frame of the Grant PID2022-136487OB-I00 funded by MCIN / AEI/ 10 . 13039/501100011033 and, by \u201C ERDF A way of making Europe\u201D.
Akhurst, R.J., Taxonomic study of Xenorhabdus, a genus of bacteria symbiotically associated with insect pathogenic nematodes. Int. J. Syst. Evol. Microbiol. 33:1 (1983), 38–45, 10.1099/00207713-33-1-38.
Barsics, F., Haubruge, E., Verheggen, F., Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (coleoptera: Elateridae). Insects 4:1 (2013), 117–152, 10.3390/insects4010117.
Batalla-Carrera, L., Morton, A., Shapiro-Ilan, D., Strand, M.R., García-del-Pino, F., Infectivity of Steinernema carpocapsae and S. feltiae to larvae and adults of the hazelnut weevil, Curculio nucum: differential virulence and entry routes. J. Nematol., 46(3), 281, 2014, PMC4176411.
Bird, A.F., Akhurst, R.J., The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int. J. Parasitol. 13 (1983), 599–606.
Blanco-Pérez, R., Bueno-Pallero, F.Á., Vicente-Díez, I., Marco-Mancebón, V.S., Pérez-Moreno, I., Campos-Herrera, R., Scavenging behavior and interspecific competition decrease offspring fitness of the entomopathogenic nematode Steinernema feltiae. J. Invertebr. Pathol. 164 (2019), 5–15.
Bode, H.B., Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 13:2 (2009), 224–230, 10.1016/j.cbpa.2009.02.037.
Boemare, N.E., Akhurst, R.J., Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). Microbiology 134:3 (1988), 751–761, 10.1099/00221287-134-3-751.
Boemare, N.E., Akhurst, R.J., Mourant, R.G., DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int. J. Syst. Bacteriol. 43:2 (1993), 249–255, 10.1099/00207713-43-2-249.
Campbell, J. F., & Gaugler, R. R. (1997). Inter-specific variation in entomopathogenic nematode foraging strategy: dichotomy or variation along a continuum?. Fundamental and Applied Nematology, 20(4), 393-398. ISSN 1164-5571.
Campos-Herrera, R., Gutiérrez, C., Screening Spanish isolates of steinernematid nematodes for use as biological control agents through laboratory and greenhouse microcosm studies. J. Invertebr. Pathol. 100:2 (2009), 100–105, 10.1016/j.jip.2008.11.009.
Campos-Herrera, R., Gutierrez, C., Steinernema feltiae intraspecific variability: infection dynamics and sex-ratio. J. Nematol., 46(1), 2014, 35 PMCID: PMC3957570.
Campos-Herrera, R., Tailliez, P., Pagès, S., Ginibre, N., Gutiérrez, C., Boemare, N.E., Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). J. Invertebr. Pathol. 102:2 (2009), 173–181, 10.1016/j.jip.2009.08.007.
Campos-Herrera, R., El-Borai, F.E., Stuart, R.J., Graham, J.H., Duncan, L.W., Entomopathogenic nematodes, phoretic Paenibacillus spp., and the use of real time quantitative PCR to explore soil food webs in Florida citrus groves. J. Invertebr. Pathol. 108:1 (2011), 30–39, 10.1016/j.jip.2011.06.005.
Campos-Herrera, R., Barbercheck, M., Hoy, C.W., Stock, S.P., Entomopathogenic Nematodes as a Model System for Advancing the Frontiers of Ecology. Journal of Nematology, 44(2), 2012, 162 PMCID: PMC3578465.
Campos-Herrera, R., Blanco-Pérez, R., Bueno-Pallero, F.Á., Duarte, A., Nolasco, G., Sommer, R.J., Rodríguez Martín, J.A., Vegetation drives assemblages of entomopathogenic nematodes and other soil organisms: Evidence from the Algarve, Portugal. Soil Biology and Biochemistry 128 (2019), 150–163, 10.1016/j.soilbio.2018.10.019.
Castaneda-Alvarez, C., Machado, R.A., Morales-Montero, P., Boss, A., Muller, A., Prodan, S., Aballay, E., Photorhabdus antumapuensis sp. nov., a novel symbiotic bacterial species associated with Heterorhabditis atacamensis entomopathogenic nematodes. Int. J. Syst. Evol. Microbiol., 72(10), 2022, 005525, 10.1099/ijsem.0.005525.
Chacon Hurtado, J.A., Ruhland, F., Boullis, A., Verheggen, F., Potato cultivar susceptibility to wireworms: feeding behaviour, fitness and semiochemicals-based host selection. Entomol. Gen., 43(6), 2023, 10.1127/entomologia/2023/2168.
Ciche, T.A., Ensign, J.C., For the insect pathogen, Photorhabdus luminescens, which end of a nematode is out?. Appl. Environ. Microbiol. 69 (2003), 1890–1897, 10.1128/AEM.69.4.1890-1897.2003.
Dillman, A.R., Guillermin, M.L., Lee, J.H., Kim, B., Sternberg, P.W., Hallem, E.A., Olfaction shapes host–parasite interactions in parasitic nematodes. Proc. Natl. Acad. Sci. 109:35 (2012), E2324–E2333, 10.1073/pnas.121143610.
Eidt, D.C., Anatomy and histology of the full-grown larva of Ctenicera aeripennis destructor (Brown) (Coleoptera: Elateridae). Can. J. Zool. 36:3 (1958), 317–361, 10.1139/z58-030.
Eidt, D.C., Thurston, G.S., Physical deterrents to infection by entomopathogenic nematodes in wireworms (Coleoptera: Elateridae) and other soil insects. Can. Entomol. 127:3 (1995), 423–429, 10.4039/Ent127423-3.
Enright, M.E., McInerney, J.O., Griffin, C.T., Characterization of endospore-forming bacteria associated with entomopathogenic nematodes, Heterorhabditis spp., and description of Paenibacillus nematophilus sp. nov. Int. J. Syst. Evol. Microbiol. 53:2 (2003), 435–441, 10.1099/ijs.0.02344-0.
Curia Europa (2023). Available at: https://curia.europa.eu/juris/document/document.jsf?text=&docid=269405&pageIndex=0&doclang=FR&mode=req&dir=&occ=first&part=1&cid=1486798 (Accessed: 15 January 2024).
Furlan, L., The biology of Agriotes sordidus Illiger (Col., Elateridae). J. Appl. Entomol. 128:9–10 (2004), 696–706, 10.1111/j.1439-0418.2004.00914.x.
Furlan, L., & Toffanin, F. (1998). Effectiveness of new insecticides used as seed dressing (imidacloprid and fipronil) against wireworms in a controlled environment.
Furlan, L., Toth, M., Management and biological control of wireworm populations in Europe: current possibilities and future perspectives. IOBC WPRS BULLETIN 30:7 (2007), 11–16.
Furlan, L., Benvegnù, I., Bilò, M.F., Lehmhus, J., Ruzzier, E., Species identification of wireworms (Agriotes spp.; coleoptera: Elateridae) of agricultural importance in Europe: A new “horizontal identification table”. Insects, 12(6), 2021, 534, 10.3390/insects12060534.
Gaugler, R., Molloy, D., Instar susceptibility of Simulium vittatum (Diptera: Simuliidae) to the entomogenous nematode Neoaplectana carpocapsae. J. Nematol., 13(1), 1, 1981, PMC2618041.
Givaudan, A., Baghdiguian, S., Lanois, A., Boemare, N., Swarming and Swimming Changes Concomitant with Phase Variation in Xenorhabdus nematophilus. In Applied and Environmental Microbiology 61:4 (1995), 1408–1413, 10.1128/aem.61.4.1408-1413.1995.
Goodrich-Blair, H., Clarke, D.J., Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol. Microbiol. 64:2 (2007), 260–268, 10.1111/j.1365-2958.2007.05671.x.
Grewal, P.S., Lewis, E.E., Gaugler, R., Campbell, J.F., Host finding behaviour as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108:2 (1994), 207–215, 10.1017/S003118200006830X.
Hodda, M., Phylum Nematoda: a classification, catalogue and index of valid genera, with a census of valid species. Zootaxa 5114:1 (2022), 1–289, 10.11646/zootaxa.5114.1.1.
Hominick, W. M., Reid, A. P., Bohan, D. A., & Briscoe, B. R. (1996). Entomopathogenic nematodes: biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Science and Technology, 6(3), 317-332. doi. org/ 10. 1007/ s0044 20050 108.
Kaya, H.K., Gaugler, R., Entomopathogenic Nematodes. Annual Review of Entomology 38:1 (1993), 181–206, 10.1146/annurev.en.38.010193.001145.
La Forgia, D., Verheggen, F., Biological alternatives to pesticides to control wireworms (Coleoptera: Elateridae). Agri Gene, 11, 2019, 100080, 10.1016/j.aggene.2018.100080.
La Forgia, D., Thibord, J.B., Larroudé, P., Francis, F., Lognay, G., Verheggen, F., Linking variety-dependent root volatile organic compounds in maize with differential infestation by wireworms. J. Pest. Sci. 93 (2020), 605–614, 10.1007/s10340-019-01190-w.
La Forgia, D., Bruno, P., Campos-herrera, R., Turlings, T., Verheggen, F., The lure of hidden death: development of an attract-and-kill strategy against wireworms combining semiochemicals and entomopathogenic nematodes. Turk. J. Zool. 45:8 (2021), 347–355, 10.3906/zoo-2106-38.
Lacey, L.A., Georgis, R., Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol., 44(2), 218. PMID: 23482993, 2012 PMCID: PMC3578470.
Lanchester, H.P., The external anatomy of the larva of the Pacific Coast wireworm. USDA Technical. Bulletin, 1939.
Laznik, Ž., Trdan, S., Attraction behaviors of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to synthetic volatiles emitted by insect damaged potato tubers. J. Chem. Ecol. 42 (2016), 314–322, 10.1007/s10886-016-0686-y.
Le Cointe, R., Plantegenest, M., Poggi, S., Wireworm management in conservation agriculture. Arthropod Plant Interact., 1–7, 2023, 10.1007/s11829-023-09966-9.
Li, X.Y., Cowles, R.S., Cowles, E.A., Gaugler, R., Cox-Foster, D.L., Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int. J. Parasitol. 37:3–4 (2007), 365–374, 10.1016/j.ijpara.2006.08.009.
Machado, R. A., Wüthrich, D., Kuhnert, P., Arce, C. C., Thönen, L., Ruiz, C., .. & Erb, M. (2018). Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. International journal of systematic and evolutionary microbiology, 68(8), 2664-2681. Doi: 10.1099/ijsem.0.002820.
Machado, R.A., Von Reuss, S.H., Chemical ecology of nematodes. Chimia, 76(11), 2022, 945, 10.2533/chimia.2022.945.
Massaoud, M.K., Marokházi, J., Fodor, A., Venekei, I., Proteolytic enzyme production by strains of the insect pathogen Xenorhabdus and characterization of an early-log-phase-secreted protease as a potential virulence factor. Appl. Environ. Microbiol. 76:20 (2010), 6901–6909, 10.1128/AEM.01567-10.
Miles, H. W. (1942). Wireworms and agriculture, with special reference to Agriotes obscurus L. Doi: 10.1111/j.1744-7348.1942.tb07585.x.
Morton, A., Garcia-del-Pino, F., Laboratory and field evaluation of entomopathogenic nematodes for control of Agriotes obscurus (L.) (Coleoptera: Elateridae). J. Appl. Entomol. 141:4 (2017), 241–246, 10.1111/jen.12343.
Parker, W.E., Howard, J.J., The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the UK. Agric. For. Entomol. 3:2 (2001), 85–98, 10.1046/j.1461-9563.2001.00094.x.
Sufyan, M., Neuhoff, D., Furlan, L., Larval development of Agriotes obscurus under laboratory and semi-natural conditions. Bull. Insectol. 2014:67 (2014), 227–235.
Thibord, J.B., Larroude, P., Baiting to protect maize against wireworms. Arthropod Plant Interact. 17:4 (2023), 507–515, 10.1007/s11829-023-09971-y.
Tobias, N.J., Wolff, H., Djahanschiri, B., Grundmann, F., Kronenwerth, M., Shi, Y.M., Bode, H.B., Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nat. Microbiol. 2:12 (2017), 1676–1685.
Turlings, T.C., Hiltpold, I., Rasmann, S., The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant and Soil 358 (2012), 51–60, 10.1007/s11104-012-1295-3.
Vernon, B., van Herk, W., Wireworms as pests of potato. Insect Pests of Potato. Academic Press, 103–148, 2022, 10.1016/b978-0-12-821237-0.00020-2.
Vicente-Díez, I., Blanco-Pérez, R., Chelkha, M., Puelles, M., Pou, A., Campos-Herrera, R., Exploring the use of entomopathogenic nematodes and the natural products derived from their symbiotic bacteria to control the grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae). Insects, 12(11), 2021, 1033, 10.3390/insects12111033.
Vicente-Díez, I., Blanco-Pérez, R., González-Trujillo, M.D.M., Pou, A., Campos-Herrera, R., Insecticidal effect of entomopathogenic nematodes and the cell-free supernatant from their symbiotic bacteria against Philaenus spumarius (Hemiptera: Aphrophoridae) nymphs. Insects, 12(5), 2021, 10.3390/insects12050448.
Wang, Y., Fang, X., Cheng, Y., Zhang, X., Manipulation of pH shift to enhance the growth and antibiotic activity of Xenorhabdus nematophila. Biomed Res. Int., 2011, 2011, 10.1155/2011/672369.
White, G.F., A method for obtaining infective nematode larvae from cultures. Science 66:1709 (1927), 302–303, 10.1126/science.66.1709.302.b.
Williams, L., Cherry, R., Shapiro-Ilan, D., Effect of host size on susceptibility of Melanotus communis (Coleoptera: Elateridae) wireworms to entomopathogens. J. Nematol., 54(1), 2022, 10.2478/jofnem-2022-0033.