[en] We used high-resolution imagery within a Geographic Information System (GIS), free gas and porewater analyses and animal bulk stable isotope measurements to characterize the biotic and abiotic aspects of the newly discovered Vestbrona Carbonate Field (VCF) seep site on the Norwegian shelf (63°28′N, 6° 31′E, ∿270 m water depth). Free gas was mainly composed of microbial methane. Sediment porewater sulfide concentrations were in the millimolar range and thus high enough to sustain seep chemosymbiotrophic animals. Nonetheless, the VCF lacked chemosymbiotrophic animals despite an abundance of methane-derived carbonate crusts which are formed by the same anaerobic processes that sustain chemosymbiotrophic animals at seeps. Furthermore, none of the sampled taxa, across various trophic guilds exhibited a detectable contribution of chemosynthetically fixed carbon to their diets based on bulk stable isotope values, suggesting a predominantly photosynthetic source of carbon to the VCF seep food web. We link the absence of chemosymbiotrophic animals to highly localized methane flow pathways, which may act as a “shunt-bypass” of the anaerobic oxidation of methane (AOM) and by extension sulfide generation, thus leading to sediment sulfide concentrations that are highly heterogeneous over very short lateral distances, inhibiting the successful colonization of chemosymbiotrophic animals at the VCF seep. Instead, the seep hosted diverse biological communities, consisting of heterotrophic benthic fauna, including long lived taxa, such as soft corals (e.g., Paragorgia arborea) and stony corals (i.e., Desmophyllum pertusum, formerly known as Lophelia pertusa). Compared to the surrounding non-seep seafloor, we measured heightened megafaunal density at the seep, which we attribute to increased habitat heterogeneity and the presence of a variety of hard substrates (i.e., methane-derived authigenic carbonates, dropstones and coral rubble), particularly since the most abundant taxa all belonged to the phylum Porifera. Compared to the surrounding non-seep seafloor, marine litter was denser within the VCF seep, which we link to the more variable local topography due to authigenic carbonates, which can rip off parts of bottom trawling nets thereby making the seep act as catchment area for marine litter.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
Sinner, Melina; National Oceanography Center, University of Southampton, Southampton, United Kingdom ; Plentzia Marine Station, University of the Basque Country, Plentzia, Spain ; Faculty of Sciences, University of Liège, Liège, Belgium
Hong, Wei Li; Department of Geological Sciences, Stockholm University, Stockholm, Sweden
Michel, Loïc ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Systématique et diversité animale ; Centre national de la recherche scientifique (CNRS), Ifremer, UMR6197 BEEP (Biologie et Ecologie des Ecosystèmes marins Profonds), University Brest, Plouzané, France
Vadakkepuliyambatta, Sunil; National Centre for Polar and Ocean Research (NCPOR), Ministry of Earth Sciences, Government of India, Vasco-da-Gama, India
Knies, Jochen; Geological Survey of Norway, Trondheim, Norway ; iC3: The Centre for ice, Cryosphere, Carbon, and Climate, The Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway
Sen, Arunima; Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway ; Department of Bioscience and Aquaculture, Nord University, Bodø, Norway
Language :
English
Title :
Lack of detectable chemosynthesis at a sponge dominated subarctic methane seep
We would like to thank the captain and crew of the R/V G. O. Sars (University of Bergen), the ROV Ægir team, and the scientific team of the 20-0 CAGE cruise from which data for this project was gathered. We thank Henning Reiss and Morten Krogstad for helping with organization and logistics and Nord University for hosting the first author and providing office space and technical equipment. We thank the MER Consortium and Erasmus+ for funding the first author’s stay at Nord University and Brian Sevin for providing guidance and suggestions. We are grateful to Henning Reiss, Sabine Cochrane, Paul Renaud and Bodil Bluhm for help with identifying animals such as the “fan animal.”We sincerely thank Spirit Energy Ltd. (now: Sval Energy AS) for supporting the ROV expedition onboard R/V G.O. Sars. The research was supported by the Research Council of Norway (RCN) (project numbers 223259, and 332635). The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.We sincerely thank Spirit Energy Ltd. (now: Sval Energy AS) for supporting the ROV expedition onboard R/V G.O. Sars. The research was supported by the Research Council of Norway (RCN) (project numbers 223259, and 332635). The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.
Althaus F. Williams A. Schlacher T. A. Kloser R. J. Green M. A. Barker B. A. et al. (2009). Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar. Ecol. Prog. Ser. 397, 279–294. 10.3354/meps08248
Åström E. K. L. Bluhm B. A. Rasmussen T. L. (2022). Chemosynthetic and photosynthetic trophic support from cold seeps in Arctic benthic communities. Front. Mar. Sci. 9, 910558. 10.3389/fmars.2022.910558
Åström E. K. L. Carroll M. L. Ambrose W. G. Sen A. Silyakova A. Carroll J. (2018). Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol. Oceanogr. 63, S209–S231. 10.1002/lno.10732
Åström E. K. L. Carroll M. L. Jr W. G. A. Carroll J. (2016). Arctic cold seeps in marine methane hydrate environments: Impacts on shelf macrobenthic community structure offshore svalbard. Mar. Ecol. Prog. Ser. 552, 1–18. 10.3354/meps11773
Astrom E. Carroll M. Sen A. Niemann H. Ambrose W. Lehmann M. et al. (2019). Chemosynthesis influences food web and community structure in high-Arctic benthos. Mar. Ecol. Prog. Ser. 629, 19–42. 10.3354/meps13101
Åström E. K. L. Oliver P. G. Carroll M. L. (2017). A new genus and two new species of Thyasiridae associated with methane seeps off Svalbard, Arctic Ocean. Mar. Biol. Res. 13, 402–416. 10.1080/17451000.2016.1272699
Åström E. K. L. Sen A. Carroll M. L. Carroll J. (2020). Cold seeps in a warming arctic: Insights for benthic ecology. Front. Mar. Sci. 7, 244. 10.3389/fmars.2020.00244
Bayon G. Henderson G. M. Bohn M. (2009). U–Th stratigraphy of a cold seep carbonate crust. Chem. Geol. 260, 47–56. 10.1016/j.chemgeo.2008.11.020
Beazley L. I. Kenchington E. L. Murillo F. J. Sacau M. del M. (2013). Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 70, 1471–1490. 10.1093/icesjms/fst124
Bell J. J. (2008). The functional roles of marine sponges. Estuar. Coast. Shelf Sci. 79, 341–353. 10.1016/j.ecss.2008.05.002
Beuck L. Vertino A. Stepina E. Karolczak M. Pfannkuche O. (2007). Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-computed tomography. Facies 53, 157–176. 10.1007/s10347-006-0094-9
Boetius A. Ravenschlag K. Schubert C. J. Rickert D. Widdel F. Gieseke A. et al. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626. 10.1038/35036572
Bugge T. Prestvik T. Rokoengen K. (1980). Lower tertiary volcanic rocks off Kristiansund — mid Norway. Mar. Geol. 35, 277–286. 10.1016/0025-3227(80)90121-8
Buhl-Mortensen L. Mortensen P. B. (2004). Crustaceans associated with the deep-water gorgonian corals Paragorgia arborea (L., 1758) and Primnoa resedaeformis (Gunn., 1763). J. Nat. Hist. 38, 1233–1247. 10.1080/0022293031000155205
Buhl-Mortensen L. Mortensen P. B. (2005). “Distribution and diversity of species associated with deep-sea gorgonian corals off Atlantic Canada,” in Cold-water corals and ecosystems erlangen Earth conference series. Editors Freiwald A. Roberts J. M. (Berlin, Heidelberg: Springer), 849–879. 10.1007/3-540-27673-4_44
Carney R. S. (1994). Consideration of the oasis analogy for chemosynthetic communities at Gulf of Mexico hydrocarbon vents. Geo-Marine Lett. 14, 149–159. 10.1007/BF01203726
Cathalot C. Van Oevelen D. Cox T. J. S. Kutti T. Lavaleye M. Duineveld G. et al. (2015). Cold-water coral reefs and adjacent sponge grounds: Hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 37. 10.3389/fmars.2015.00037
Ceramicola S. Dupré S. Somoza L. Woodside J. (2018). “Cold seep systems,” in Submarine geomorphology springer geology. Editors Micallef A. Krastel S. Savini A. (Cham: Springer International Publishing), 367–387. 10.1007/978-3-319-57852-1_19
Clark M. R. Althaus F. Schlacher T. A. Williams A. Bowden D. A. Rowden A. A. (2016). The impacts of deep-sea fisheries on benthic communities: A review. ICES J. Mar. Sci. 73, i51–i69. 10.1093/icesjms/fsv123
Coplen T. B. (2011). Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results: Guidelines and recommended terms for expressing stable isotope results. Rapid Commun. Mass Spectrom. 25, 2538–2560. 10.1002/rcm.5129
Cordes E. E. Cunha M. R. Galéron J. Mora C. Roy K. O.-L. Sibuet M. et al. (2010). The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Mar. Ecol. 31, 51–65. 10.1111/j.1439-0485.2009.00334.x
Dando P. R. (2010). “Biological communities at marine shallow-water vent and seep sites,” in The vent and seep biota: Aspects from microbes to ecosystems topics in geobiology. Editor Kiel S. (Dordrecht: Springer Netherlands), 333–378. 10.1007/978-90-481-9572-5_11
Dando P. R. Hughes J. A. Thiermann F. (1995). Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea. Geol. Soc. Lond. Spec. Publ. 87, 303–317. 10.1144/GSL.SP.1995.087.01.23
De Clippele L. H. Huvenne V. A. I. Molodtsova T. N. Roberts J. M. (2019). The diversity and ecological role of non-scleractinian corals (antipatharia and alcyonacea) on scleractinian cold-water coral mounds. Front. Mar. Sci. 6, 184. 10.3389/fmars.2019.00184
De Goeij J. M. Van Oevelen D. Vermeij M. J. A. Osinga R. Middelburg J. J. De Goeij A. F. P. M. et al. (2013). Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 342, 108–110. 10.1126/science.1241981
De Juan S. Lleonart J. (2010). Fisheries conservation management and vulnerable ecosystems in the Mediterranean open seas, including the deep sea. Tunis: UNEP-MAP-RAC/SPA.
Demopoulos A. W. J. Gualtieri D. Kovacs K. (2010). Food-web structure of seep sediment macrobenthos from the Gulf of Mexico. Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 1972–1981. 10.1016/j.dsr2.2010.05.011
DeNiro M. J. Epstein S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica Cosmochimica Acta 42, 495–506. 10.1016/0016-7037(78)90199-0
D’Onghia G. (2019). “30 cold-water corals as shelter, feeding and life-history critical habitats for fish species: Ecological interactions and fishing impact,” in Mediterranean cold-water corals: Past, present and future: Understanding the deep-sea realms of coral coral reefs of the world. Editors Orejas C. Jiménez C. (Cham: Springer International Publishing), 335–356. 10.1007/978-3-319-91608-8_30
Fisher C. Roberts H. Cordes E. Bernard B. (2007). Cold seeps and associated communities of the gulf of Mexico. Oceanog 20, 118–129. 10.5670/oceanog.2007.12
Fredriksen S. (2003). Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis. Mar. Ecol. Prog. Ser. 260, 71–81. 10.3354/meps260071
Fry B. (2006). Stable isotope ecology. New York, NY: Springer. 10.1007/0-387-33745-8
Gebruk A. V. Krylova E. M. Lein A. Y. Vinogradov G. M. Anderson E. Pimenov V. et al. (2003). Methane seep community of the Ha˚kon mosby mud volcano (the Norwegian sea): Composition and trophic aspects. Sarsia N. Atl. Mar. Sci. 88, 394–403. 10.1080/00364820310003190
Goffredi S. K. Tilic E. Mullin S. W. Dawson K. S. Keller A. Lee R. W. et al. (2020). Methanotrophic bacterial symbionts fuel dense populations of deep-sea feather duster worms (Sabellida, Annelida) and extend the spatial influence of methane seepage. Sci. Adv. 6, eaay8562. 10.1126/sciadv.aay8562
Grall J. Le Loc’h F. Guyonnet B. Riera P. (2006). Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338, 1–15. 10.1016/j.jembe.2006.06.013
Grey J. Deines P. (2005). Differential assimilation of methanotrophic and chemoautotrophic bacteria by lake chironomid larvae. Aquat. Microb. Ecol. 40, 61–66. 10.3354/ame040061
Grupe B. M. (2014). Implications of environmental heterogeneity for community structure, colonization, and trophic dynamics at eastern pacific methane seeps. Available at: https://escholarship.org/uc/item/3r68b6pz (Accessed November 8, 2022).
Gutt J. Schickan T. (1998). Epibiotic relationships in the Antarctic benthos. Antarct. Sci. 10, 398–405. 10.1017/S0954102098000480
Hedges J. I. Stern J. H. (1984). Carbon and nitrogen determinations of carbonate-containing solids1. Limnol. Oceanogr. 29, 657–663. 10.4319/lo.1984.29.3.0657
Helle K. Pennington M. Hareide N.-R. Fossen I. (2015). Selecting a subset of the commercial catch data for estimating catch per unit effort series for ling (Molva molva L). Fish. Res. 165, 115–120. 10.1016/j.fishres.2014.12.015
Hobson K. A. Ambrose W. G. Renaud P. R. (1996). Sources of primary production, benthicpelagic coupling, and trophic relationships within the northeast water polynya: Insights from δ 1 3 C and δ 1 5 N analysis. Oceanogr. Lit. Rev. 7, 689.
Hogg M. M. Tendal O. S. Conway K. W. Pomponi S. A. van Soest R. W. M. Gutt J. et al. (2010). Deep-sea sponge grounds: Reservoirs of biodiversity. UNEP-WCMC Available at: https://dare.uva.nl/personal/pure/en/publications/deepsea-sponge-grounds-reservoirs-of-biodiversity(c0c920a3-4208-4d3c-b55d-1a1b09aced52).html (Accessed July 6, 2021).
Hovland M. Risk M. (2003). Do Norwegian deep-water coral reefs rely on seeping fluids? Mar. Geol. 198, 83–96. 10.1016/S0025-3227(03)00096-3
ICES (2019). Norwegian Sea Ecoregion—Ecosystem overview. In Report of the ICES Advisory Committee. ICES Advice 2019, Section 12.1. 10.17895/ices.advice.5748
Jensen A. Frederiksen R. (1992). The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinaria) on the Faroe shelf. Sarsia 77, 53–69. 10.1080/00364827.1992.10413492
Johansen U. Bull-Berg H. Vik L. H. Stokka A. M. Richardsen R. Winther U. (2019). The Norwegian seafood industry – importance for the national economy. Mar. Policy 110, 103561. 10.1016/j.marpol.2019.103561
Jonsson L. G. Nilsson P. G. Floruta F. Lundälv T. (2004). Distributional patterns of macro- and megafauna associated with a reef of the cold-water coral Lophelia pertusa on the Swedish west coast. Marine Ecology Progress Series 284, 163–171. 10.3354/meps284163
Jost L. (2006). Entropy and diversity. Oikos 113, 363–375. 10.1111/j.2006.0030-1299.14714.x
Joye S. B. Boetius A. Orcutt B. N. Montoya J. P. Schulz H. N. Erickson M. J. et al. (2004). The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem. Geol. 205, 219–238. 10.1016/j.chemgeo.2003.12.019
Kassambara A. (2023). Ggpubr: “ggplot2” based publication ready plots. Available at: https://CRAN.R-project.org/package=ggpubr (Accessed March 29, 2023).
Kenchington E. Power D. Koen-Alonso M. (2013). Associations of demersal fish with sponge grounds on the continental slopes of the northwest Atlantic. Mar. Ecol. Prog. Ser. 477, 217–230. 10.3354/meps10127
Kennicutt M. C. Burke R. A. MacDonald I. R. Brooks J. M. Denoux G. J. Macko S. A. (1992). Stable isotope partitioning in seep and vent organisms: Chemical and ecological significance. Chem. Geol. Isot. Geosci. Sect. 101, 293–310. 10.1016/0009-2541(92)90009-T
Kiel S. (2016). A biogeographic network reveals evolutionary links between deep-sea hydrothermal vent and methane seep faunas. Proc. R. Soc. B Biol. Sci. 283, 20162337. 10.1098/rspb.2016.2337
Kiel S. (2010). On the potential generality of depth-related ecologic structure in cold-seep communities: Evidence from Cenozoic and Mesozoic examples. Palaeogeogr. Palaeoclimatol. Palaeoecol. 295, 245–257. 10.1016/j.palaeo.2010.05.042
Kvangarsnes K. Frantzen S. Julshamn K. Sætre L. J. Nedreaas K. Maage A. (2012). Distribution of mercury in a gadoid fish species, tusk (brosme brosme), and its implication for food safety. J. Food Sci. Eng. 2, 603–615. 10.17265/2159-5828/2012.11.001
Lessard-Pilon S. A. Podowski E. L. Cordes E. E. Fisher C. R. (2010). Megafauna community composition associated with Lophelia pertusa colonies in the Gulf of Mexico. Deep Sea Res. 57, 1882–1890. 10.1016/j.dsr2.2010.05.013
Levin L. A. Baco A. R. Bowden D. A. Colaco A. Cordes E. E. Cunha M. R. et al. (2016). Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Front. Mar. Sci. 3, 72. 10.3389/fmars.2016.00072
Levin L. A. (2005). “Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes,” in Oceanography and Marine Biology: An Annual Review (Boca Raton: CRC Press), 1–46. 10.1201/9781420037449
Levin L. A. Michener R. H. (2002). Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: The lightness of being at Pacific methane seeps. Limnol. Oceanogr. 47, 1336–1345. 10.4319/lo.2002.47.5.1336
Lipková Ľ. Hovorková K. (2018). Economic situation in Norway after the outbreak of the global financial and oil crises in the context of EU integration trends. EA-XXI 169, 12–14. 10.21003/ea.V169-02
Lösekann T. Robador A. Niemann H. Knittel K. Boetius A. Dubilier N. (2008). Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an arctic cold seep (haakon mosby mud volcano, barents sea). Environ. Microbiol. 10, 3237–3254. 10.1111/j.1462-2920.2008.01712.x
Luff R. Wallmann K. Aloisi G. (2004). Numerical modeling of carbonate crust formation at cold vent sites: Significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet. Sci. Lett. 221, 337–353. 10.1016/S0012-821X(04)00107-4
MacAvoy S. E. Macko S. A. Carney R. S. (2003). Links between chemosynthetic production and mobile predators on the Louisiana continental slope: Stable carbon isotopes of specific fatty acids. Chem. Geol. 201, 229–237. 10.1016/S0009-2541(03)00204-3
Mahadevan A. Orpe A. V. Kudrolli A. Mahadevan L. (2012). Flow-induced channelization in a porous medium. EPL 98, 58003. 10.1209/0295-5075/98/58003
Maldonado M. Aguilar R. Bannister R. J. Bell J. J. Conway K. W. Dayton P. K. et al. (2017). “Sponge Grounds as Key Marine Habitats: A Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns,” in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots. Editor Rossi S. Bramanti L. Gori A. Orejas Saco del Valle C. (Cham: Springer International Publishing), 1–39. 10.1007/978-3-319-17001-5_24-1
Malecha P. Heifetz J. (2017). Long-term effects of bottom trawling on large sponges in the Gulf of Alaska. Cont. Shelf Res. 150, 18–26. 10.1016/j.csr.2017.09.003
Mateo M. A. Serrano O. Serrano L. Michener R. H. (2008). Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: Implications for food web studies using stable isotopes. Oecologia 157, 105–115. 10.1007/s00442-008-1052-8
McCutchan J. H. JrLewis W. M. JrKendall C. McGrath C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390. 10.1034/j.1600-0706.2003.12098.x
McLean E. L. Yoshioka P. M. (2007). “Associations and interactions between gorgonians and sponges,” in Porifera research: Biodiversity, innovation and sustainability série livros (Rio de Janeiro: Museu Nacional), 139–145.
Meyer K. S. Young C. M. Sweetman A. K. Taylor J. Soltwedel T. Bergmann M. (2016). Rocky islands in a sea of mud: Biotic and abiotic factors structuring deep-sea dropstone communities. Mar. Ecol. Prog. Ser. 556, 45–57. 10.3354/meps11822
Milkov A. V. Etiope G. (2018). Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org. Geochem. 125, 109–120. 10.1016/j.orggeochem.2018.09.002
Minagawa M. Wada E. (1984). Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochimica Cosmochimica Acta 48, 1135–1140. 10.1016/0016-7037(84)90204-7
Mohn K. Osmundsen P. (2008). Exploration economics in a regulated petroleum province: The case of the Norwegian Continental Shelf. Energy Econ. 30, 303–320. 10.1016/j.eneco.2006.10.011
Nakagawa F. Tsunogai U. Yoshida N. Adams D. D. (2003). “Stable isotopic compositions of bacterial light hydrocarbons in marginal marine sediments,” in Land and marine hydrogeology. Editors Taniguchi M. Wang K. Gamo T. (Amsterdam: Elsevier), 141–150. 10.1016/B978-044451479-0/50021-2
Nicot J.-P. Mickler P. Larson T. Castro M. C. Darvari R. Uhlman K. et al. (2017). Methane occurrences in aquifers overlying the barnett shale play with a focus on parker county, Texas. Groundwater 55, 469–481. 10.1111/gwat.12508
Norvegian Ministry of Climate and Environment (2020). Norway’s integrated Ocean Management plans — barents sea–lofoten area; the Norwegian sea; and the North sea and skagerrak— report to the storting (white paper). regjeringen.no Available at: https://www.regjeringen.no/en/dokumenter/meld.-st.-20-20192020/id2699370/(Accessed June 13, 2021).
Norwegian Directorate of Fisheries (2020). Economic and biological figures from Norwegian fisheries – 2020.
Oksanen J. Simpson G. L. Blanchet F. G. Kindt R. Legendre P. Minchin P. R. et al. (2022). vegan: Community ecology package. Available at: https://CRAN.R-project.org/package=vegan (Accessed March 29, 2023).
OSPAR (2010). Background document for coral gardens. London: OSPAR Commission.
Paull C. K. Dallimore S. R. Caress D. W. Gwiazda R. Melling H. Riedel M. et al. (2015). Active mud volcanoes on the continental slope of the Canadian Beaufort Sea. Geochem. Geophys. Geosystems 16, 3160–3181. 10.1002/2015GC005928
Pawlik J. R. McMurray S. E. (2020). The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu. Rev. Mar. Sci. 12, 315–337. 10.1146/annurev-marine-010419-010807
Pham C. K. Murillo F. J. Lirette C. Maldonado M. Colaço A. Ottaviani D. et al. (2019). Removal of deep-sea sponges by bottom trawling in the flemish cap area: Conservation, ecology and economic assessment. Sci. Rep. 9, 15843. 10.1038/s41598-019-52250-1
Rogers A. Kennedy A. Nelson E. Robinson A. (2004). Patients' experiences of an open access follow up arrangement in managing inflammatory bowel disease. Qual. Saf. Health Care 13, 374–378. 10.1136/qhc.13.5.374
Rooks C. Fang J. K.-H. Mørkved P. T. Zhao R. Rapp H. T. Xavier J. R. et al. (2020). Deep-sea sponge grounds as nutrient sinks: Denitrification is common in boreo-arctic sponges. Biogeosciences 17, 1231–1245. 10.5194/bg-17-1231-2020
Rooper C. N. Wilkins M. E. Rose C. S. Coon C. (2011). Modeling the impacts of bottom trawling and the subsequent recovery rates of sponges and corals in the Aleutian Islands, Alaska. Cont. Shelf Res. 31, 1827–1834. 10.1016/j.csr.2011.08.003
Rybakova (Goroslavskaya) E. Galkin S. Bergmann M. Soltwedel T. Gebruk A. (2013). Density and distribution of megafauna at the Håkon Mosby mud volcano (the Barents Sea) based on image analysis. Biogeosciences 10, 3359–3374. 10.5194/bg-10-3359-2013
Sahling H. Galkin S. V. Salyuk A. Greinert J. Foerstel H. Piepenburg D. et al. (2003). Depth-related structure and ecological significance of cold-seep communities—A case study from the sea of Okhotsk. Deep Sea Res. Part I Oceanogr. Res. Pap. 50, 1391–1409. 10.1016/j.dsr.2003.08.004
Sano Y. Kinoshita N. Kagoshima T. Takahata N. Sakata S. Toki T. et al. (2017). Origin of methane-rich natural gas at the West Pacific convergent plate boundary. Sci. Rep. 7, 15646. 10.1038/s41598-017-15959-5
Savvichev A. S. Kadnikov V. V. Kravchishina M. D. Galkin S. V. Novigatskii A. N. Sigalevich P. A. et al. (2018). Methane as an organic matter source and the trophic basis of a Laptev Sea cold seep microbial community. Geomicrobiol. J. 35, 411–423. 10.1080/01490451.2017.1382612
Schagerström E. Sundell K. S. (2021). Parastichopus tremulus (Gunnerus, 1767) red sea cucumber, red signal sea cucumber (Sweden), rødpølse (Norway and Denmark), Aspidochirotida, Stichopodidae. BECHE-DE-MER Inf. Bull. 3, 22–24.
Sedano F. Navarro-Barranco C. Guerra-García J. M. Espinosa F. (2020). Understanding the effects of coastal defence structures on marine biota: The role of substrate composition and roughness in structuring sessile, macro- and meiofaunal communities. Mar. Pollut. Bull. 157, 111334. 10.1016/j.marpolbul.2020.111334
Sen A. Åström E. K. L. Hong W.-L. Portnov A. Waage M. Serov P. et al. (2018a). Geophysical and geochemical controls on the megafaunal community of a high Arctic cold seep. Biogeosciences 15, 4533–4559. 10.5194/bg-15-4533-2018
Sen A. Chitkara C. Hong W.-L. Lepland A. Cochrane S. Primio R. et al. (2019a). Image based quantitative comparisons indicate heightened megabenthos diversity and abundance at a site of weak hydrocarbon seepage in the southwestern Barents Sea. PeerJ 7, e7398. 10.7717/peerj.7398
Sen A. Didriksen A. Hourdez S. Svenning M. M. Rasmussen T. L. (2020). Frenulate siboglinids at high Arctic methane seeps and insight into high latitude frenulate distribution. Ecol. Evol. 10, 1339–1351. 10.1002/ece3.5988
Sen A. Duperron S. Hourdez S. Piquet B. Léger N. Gebruk A. et al. (2018b). Cryptic frenulates are the dominant chemosymbiotrophic fauna at Arctic and high latitude Atlantic cold seeps. PLOS ONE 13, e0209273. 10.1371/journal.pone.0209273
Sen A. Himmler T. Hong W. L. Chitkara C. Lee R. W. Ferré B. et al. (2019b). Atypical biological features of a new cold seep site on the Lofoten-Vesterålen continental margin (northern Norway). Sci. Rep. 9, 1762. 10.1038/s41598-018-38070-9
Sibuet M. Olu K. (1998). Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res. Part II Top. Stud. Oceanogr. 45, 517–567. 10.1016/S0967-0645(97)00074-X
Sibuet M. Olu-Le Roy K. (2002). “Cold seep communities on continental margins: Structure and quantitative distribution relative to geological and fluid venting patterns,” in Ocean margin systems. Editors Wefer P. D. G. Billett D. D. Hebbeln D. D. Jørgensen P. D. B. B. Schlüter P. D. M. van Weering D. T. C. E. (Berlin Heidelberg: Springer), 235–251. 10.1007/978-3-662-05127-6_15
Sinner M. Hong W. Michel L. Vadakkepuliyambatta S. Knies J. Sen A. (2020). Stable isotope ratios of C, N and S in fauna sampled at the Vestbrona Carbonate Field (Norway). 10.17882/95359
Sinner M. Sen A. Hong W. L. Michel L. N. Vadakkepuliyambatta S. Knies J. (2023). Megafauna of Vestbrona Carbonate Field and surrounding benthos from seafloor mosaics. 10.15468/5vrbbj
Smirnov R. V. (2014). A revision of the Oligobrachiidae (Annelida: Pogonophora), with notes on the morphology and distribution of Oligobrachia haakonmosbiensis Smirnov. Mar. Biol. Res. 10, 972–982. 10.1080/17451000.2013.872799
Smirnov R. V. (2000). Two new species of Pogonophora from the arctic mud volcano off northwestern Norway. null 85, 141–150. 10.1080/00364827.2000.10414563
Søreide J. E. Hop H. Carroll M. L. Falk-Petersen S. Hegseth E. N. (2006). Seasonal food web structures and sympagic–pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Prog. Oceanogr. 71, 59–87. 10.1016/j.pocean.2006.06.001
Stagars M. H. Mishra S. Treude T. Amann R. Knittel K. (2017). Microbial community response to simulated petroleum seepage in caspian sea sediments. Front. Microbiol. 8, 764. Available at:. 10.3389/fmicb.2017.00764Accessed June 12, 2023)
Suess E. (2010). “Marine cold seeps,” in Handbook of hydrocarbon and lipid microbiology. Editor Timmis K. N. (Berlin, Heidelberg: Springer), 185–203. 10.1007/978-3-540-77587-4_12
Suess E. (2020). “Marine cold seeps: Background and recent advances,” in Hydrocarbons, oils and lipids: Diversity, origin, chemistry and fate. Editor Wilkes H. (Cham: Springer International Publishing), 747–767. 10.1007/978-3-319-90569-3_27
Sundahl H. Buhl-Mortensen P. Buhl-Mortensen L. (2020). Distribution and suitable habitat of the cold-water corals Lophelia pertusa, Paragorgia arborea, and Primnoa resedaeformis on the Norwegian continental shelf. Front. Mar. Sci. 7, 213. 10.3389/fmars.2020.00213
Tarasov V. G. Gebruk A. V. Mironov A. N. Moskalev L. I. (2005). Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chem. Geol. 224, 5–39. 10.1016/j.chemgeo.2005.07.021
Torres M. E. McManus J. Hammond D. E. de Angelis M. A. Heeschen K. U. Colbert S. L. et al. (2002). Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: Hydrological provinces. Earth Planet. Sci. Lett. 201, 525–540. 10.1016/S0012-821X(02)00733-1
Vanreusel A. Andersen A. Boetius A. Connelly D. Cunha M. Decker C. et al. (2009). Biodiversity of cold seep ecosystems along the European margins. Oceanog 22, 110–127. 10.5670/oceanog.2009.12
Vedenin A. A. Kokarev V. N. Chikina M. V. Basin A. B. Galkin S. V. Gebruk A. V. (2020). Fauna associated with shallow-water methane seeps in the Laptev Sea. PeerJ 8, e9018. 10.7717/peerj.9018
Wankel S. D. Adams M. M. Johnston D. T. Hansel C. M. Joye S. B. Girguis P. R. (2012). Anaerobic methane oxidation in metalliferous hydrothermal sediments: Influence on carbon flux and decoupling from sulfate reduction. Environ. Microbiol. 14, 2726–2740. 10.1111/j.1462-2920.2012.02825.x
Whiticar M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314. 10.1016/S0009-2541(99)00092-3
Wickham H. Chang W. Henry L. Pedersen T. L. Takahashi K. Wilke C. et al. (2023). ggplot2: Create elegant data visualisations using the grammar of graphics. Available at: https://CRAN.R-project.org/package=ggplot2 (Accessed March 29, 2023).
Wulff J. (2001). Assessing and monitoring coral reef sponges: Why and how? Bull. Mar. Sci. 69, 831–846. Available at: http://pascalfrancis.inist.frvibadindex.phpaction=getRecordDetail&idt=13403160 (Accessed July 12, 2023).
Xiao N. Cook J. Jégousse C. Li M. (2023). ggsci: Scientific journal and sci-fi themed color palettes for ggplot2. Available at: https://CRAN.R-project.org/package=ggsci (Accessed March 29, 2023).
Yamanaka T. Shimamura S. Nagashio H. Yamagami S. Onishi Y. Hyodo A. et al. (2015). “A compilation of the stable isotopic compositions of carbon, nitrogen, and sulfur in soft body parts of animals collected from deep-sea hydrothermal vent and methane seep fields: Variations in energy source and importance of subsurface microbial processes in the sediment-hosted systems,” in Subseafloor biosphere linked to hydrothermal systems: TAIGA concept. Editors Ishibashi J. Okino K. Sunamura M. (Tokyo: Springer Japan), 105–129. 10.1007/978-4-431-54865-2_10
Ziegler A. F. Smith C. R. Edwards K. F. Vernet M. (2017). Glacial dropstones: Islands enhancing seafloor species richness of benthic megafauna in west antarctic peninsula fjords. Mar. Ecol. Prog. Ser. 583, 1–14. 10.3354/meps12363