[en] Sea ice is one of the most critical environmental drivers shaping primary production and fluxes of organic inputs to benthic communities in the Arctic Ocean. Fluctuations in organic inputs influence ecological relationships, trophic cascades, and energy fluxes. However, changes in sea-ice concentration (SIC) induced by global warming could lead to significant shifts in trophic interactions, ultimately affecting the functioning of Arctic food webs. Despite the increasing concern over the need to understand benthic species and food web responses to rapid sea-ice loss, few studies have addressed this topic so far. Using multiple niche metrics based on stable isotopes, this research examined the trophic ecology of epibenthic communities in areas with different SIC across the Canadian Arctic Ocean. We found that trophic niches varied according to complex interactions between environmental conditions, resource supply, and biotic pressures such as predation and competition. Our results highlighted a lower isotopic richness (i.e., shorter food chain length and niche width) in low and high SIC areas, suggesting homogeneity of resources and a low diversity of food items ingested by individuals. In contrast, a higher isotopic richness (i.e., broad niche) was observed in the moderate SIC area, implying higher heterogeneity in basal food sources and consumers using individual trophic niches. Finally, our findings suggested a lower isotopic redundancy in areas with high SIC compared to low and moderate SIC. Overall, our results support the idea that sea ice is an important driver of benthic food web dynamics and reinforce the urgent need for further investigations of declining sea ice cover impacts on Arctic food web functioning.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
Michel, Loïc ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Systématique et diversité animale ; Université de Brest, CNRS, Ifremer, UMR6197 Biologie et Écologie des Écosystèmes marins Profonds (BEEP), Plouzané, France
Roy, Virginie; Fisheries and Oceans Canada, Maurice Lamontagne Institute, Québec, Canada
Friscourt, Noémie; Institute of Marine and Antarctic Studies, Australia
Gosselin, Michel; Québec-Océan and Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Québec, Canada
Nozais, Christian; Québec-Océan and Département de biologie, chimie et géographie, Université du Québec à Rimouski, Québec, Canada
Trophic ecology of epibenthic communities exposed to different sea-ice concentrations across the Canadian Arctic Ocean
Publication date :
September 2023
Journal title :
Progress in Oceanography
ISSN :
0079-6611
Publisher :
Elsevier Ltd
Volume :
217
Pages :
103105
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ArcticNet NSERC - Natural Sciences and Engineering Research Council ULaval - Université de Laval IFREMER - Institut Français de Recherche pour l'Exploitation de la Mer
Funding text :
We are grateful to ArcticNet, Natural Sciences and Engineering Research Council of Canada, and the Green Edge project (http://www.greenedgeproject.info) for providing us with the financial resources to make this research possible. We also thank Sentinel North and Québec-Océan for providing financial resources for training purposes. We want to thank the officers and the crew of the Canadian research icebreaker CCGS Amundsen for affording the support and facilities during the oceanographic campaigns of 2011, 2014, and 2016 in the Arctic. We also express our gratitude to Cindy Grant and the sampling team for their great work in the field campaign. Likewise, we thank the research professionals Laure de Montety, Lisa Treau de Coeli, and Caroline Guillemette for the help with the benthos; Geochemistry lab, and Jonathan Gagnon for his help in measuring stable isotope ratios. We are thankful to Université Laval, Takuvik, ArcticNet, and Québec-Océan for their contribution in terms of coordination, equipment, and facilities. The lead author expresses gratitude to Sergio Cortez Ghio for his help and valuable comments about the statistical analyses carried out throughout this investigation. The lead author expresses gratitude to the Institut français de recherche pour l'exploitation de la mer (Ifremer), Bretagne, France, for providing their facilities during the time of the internship in the institute. Finally, the authors would like to thank the reviewers for their fruitful comments on the manuscript.We are grateful to ArcticNet, Natural Sciences and Engineering Research Council of Canada, and the Green Edge project (http://www.greenedgeproject.info) for providing us with the financial resources to make this research possible. We also thank Sentinel North and Québec-Océan for providing financial resources for training purposes. We want to thank the officers and the crew of the Canadian research icebreaker CCGS Amundsen for affording the support and facilities during the oceanographic campaigns of 2011, 2014, and 2016 in the Arctic. We also express our gratitude to Cindy Grant and the sampling team for their great work in the field campaign. Likewise, we thank the research professionals Laure de Montety, Lisa Treau de Coeli, and Caroline Guillemette for the help with the benthos; Geochemistry lab, and Jonathan Gagnon for his help in measuring stable isotope ratios. We are thankful to Université Laval, Takuvik, ArcticNet, and Québec-Océan for their contribution in terms of coordination, equipment, and facilities. The lead author expresses gratitude to Sergio Cortez Ghio for his help and valuable comments about the statistical analyses carried out throughout this investigation. The lead author expresses gratitude to the Institut français de recherche pour l'exploitation de la mer (Ifremer), Bretagne, France, for providing their facilities during the time of the internship in the institute. Finally, the authors would like to thank the reviewers for their fruitful comments on the manuscript.
Araújo, M.S., Bolnick, D.I., Martinelli, L.A., Giaretta, A.A., Dos Reis, S.F., Individual-level diet variation in four species of Brazilian frogs. J. Anim. Ecol. 78 (2009), 848–856.
Araújo, M.S., Bolnick, D.I., Layman, C.A., The ecological causes of individual specialisation. Ecol. Lett. 14 (2011), 948–958.
Ardyna, M., Mundy, C.J., Mills, M.M., Oziel, L., Grondin, P.L., Lacour, L., Verin, G., Van Dijken, G., Ras, J., Alou-Font, E., Babin, M., Gosselin, M., Tremblay, J.É., Raimbault, P., Assmy, P., Nicolaus, M., Claustre, H., Arrigo, K.R., Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem. Sci. Anth., 8, 2020, 30.
Arrigo, K.R., van Dijken, G.L., Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic. Geophys. Res. Lett. 31 (2004), 2–5.
Barber, D.G., Hanesiak, J.M., Meteorological forcing of sea ice concentrations in the southern Beaufort Sea over the period 1979 to 2000. J. Geophys. Res., 109, 2004, C06014.
Barber, D.G., Massom, R.A., The Role of Sea Ice in Arctic and Antarctic Polynyas. Elsevier Oceanogr. Ser. 74 (2007), 1–54.
Bearhop, S., Adams, C.E., Waldron, S., Fuller, R.A., Macleod, H., Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73 (2004), 1007–1012.
Bell, L.E., Bluhm, B.A., Iken, K., Influence of terrestrial organic matter in marine food webs of the Beaufort Sea shelf and slope. Mar. Ecol. Prog. Ser. 550 (2016), 1–24.
Bhatt, U.S., Walker, D.A., Walsh, J.E., Carmack, E.C., Frey, K.E., Meier, W.N., Moore, S.E., Parmentier, F.J.W., Post, E., Romanovsky, V.E., Simpson, W.R., Implications of arctic sea ice decline for the earth system. Annu. Rev. Env. Resour. 39 (2014), 57–89.
Brind'Amour, A., Dubois, S.F., Isotopic diversity indices: How sensitive to food web structure?. PLoS One 8 (2013), 1–9.
Canuel, E.A., Spivak, A.C., Waterson, E.J., Duffy, J.E., Biodiversity and food web structure influence short-term accumulation of sediment organic matter in an experimental seagrass system. Limnol. Oceanogr. 52 (2007), 590–602.
Cautain, I.J., Last, K.S., McKee, D., Bluhm, B.A., Renaud, P.E., Ziegler, A.F., Narayanaswamy, B.E., Uptake of sympagic organic carbon by the Barents Sea benthos linked to sea ice seasonality. Front. Mar. Sci., 9, 2022, 1009303.
Cavalieri, D.J., Parkinson, C.L., Gloersen, P., Zwally, H.J., 1996. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I- SSMIS Passive Microwave Data, Version 1, Boulder, Color., USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/8GQ8LZQVL0VL.
Comte, L., Cucherousset, J., Boulêtreau, S., Olden, J.D., Resource partitioning and functional diversity of worldwide freshwater fish communities. Ecosphere, 7(6), 2016, e01356.
Costa-Pereira, R., Araújo, M.S., Souza, F.L., Ingram, T., Competition and resource breadth shape niche variation and overlap in multiple trophic dimensions. Proc. R. Soc. B, 286, 2019, 20190369.
Costa-Pereira, R., Tavares, L.E.R., de Camargo, P.B., Araújo, M.S., 2017. Seasonal population and individual niche dynamics in a tetra fish in the Pantanal wetlands. Biotropica. 49(4): 531–538 2017.
Cucherousset, J., Villéger, S., Quantifying the multiple facets of isotopic diversity: new metrics for stable isotope ecology. Ecol. Ind. 56 (2015), 152–160.
Davias, L.A., Kornis, M.S., Breitburg, D.L., Environmental factors influencing δ13C and δ15N in three Chesapeake Bay fishes. ICES J. Mar. Sci. 71 (2014), 689–702.
DeNiro, M.J., Epstein, S., 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta.
Divine, L.M., Iken, K., Bluhm, B.A., Regional benthic food web structure on the Alaska Beaufort Sea shelf. Mar. Ecol. Prog. Ser. 531 (2015), 15–32.
Dubois, S., Jean-Louis, B., Bertrand, B., Lefebvre, S., Isotope trophic-step fractionation of suspension-feeding species: Implications for food partitioning in coastal ecosystems. J. Exp. Mar. Bio. Ecol. 351 (2007), 121–128.
Dunton, K., Saupe, S., Golikov, A., Schell, D., Schonberg, S., Trophic relationships and isotopic gradients among arctic and subarctic marine fauna. Mar. Ecol. Prog. Ser. 56 (1989), 89–97.
Dunton, K.H., Schell, D.M., Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an Arctic kelp community: δ13C evidence. Mar. Biol. 625 (1987), 615–625.
Ehrnsten, E., Norkko, A., Timmermann, K., Gustafsson, B.G., Benthic-pelagic coupling in coastal seas – Modelling macrofaunal biomass and carbon processing in response to organic matter supply. J. Mar. Syst. 196 (2019), 36–47.
Evans, K.L., Greenwood, J.J.D., Gaston, K.J., Dissecting the species-energy relationship. Proc. R. Soc. B Biol. Sci. 272 (2005), 2155–2163.
Forest, A., Tremblay, J. éric, Gratton, Y., Martin, J., Gagnon, J., Darnis, G., Sampei, M., Fortier, L., Ardyna, M., Gosselin, M., Hattori, H., Nguyen, D., Maranger, R., Vaqué, D., Marrasé, C., Pedrós-Alió, C., Sallon, A., Michel, C., Kellogg, C., Deming, J., Shadwick, E., Thomas, H., Link, H., Archambault, P., Piepenburg, D., 2011. Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): A synthesis of field measurements and inverse modeling analyses. Prog. Oceanogr. 91, 410–436.
Frid, C.L.J., Caswell, B.A., Does ecological redundancy maintain functioning of marine benthos on centennial to millennial time scales?. Mar. Ecol. 37 (2016), 392–410.
Friscourt, N., 2016. Structure et résilience des réseaux trophiques benthiques de l'Arctique canadien et de la mer des Tchouktches. MSc dissertation, Université du Québec à Rimouski, Québec, Canada.
Fry, B., Sherr, E., δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27 (1984), 49–63.
Garf, G., Benthic-pelagic coupling in a deep-sea benthic community. Nature 341 (1989), 437–439.
Grebmeier, J.M., Barry, J.P., The influence of oceanographic processes on pelagic-benthic coupling in Polar Regions: a benthic perspective. J. Mar. Syst. 2 (1991), 495–518.
Griffiths, J.R., Kadin, M., Nascimento, F.J.A., Tamelander, T., Törnroos, A., Bonaglia, S., Bonsdorff, E., Brüchert, V., Gårdmark, A., Järnström, M., Kotta, J., Lindegren, M., Nordström, M.C., Norkko, A., Olsson, J., Weigel, B., Žydelis, R., Blenckner, T., Niiranen, S., Winder, M., The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Glob. Chang. Biol. 23 (2017), 2179–2196.
Howell, S.E.L., Wohlleben, T., Dabboor, M., Derksen, C., Komarov, A., Pizzolato, L., Recent changes in the exchange of sea ice between the Arctic Ocean and the Canadian Arctic Archipelago. J. Geophys. Res. Ocean. 118 (2013), 3595–3607.
Hutchinson, G., Concluding remarks. Cold Spring Harb. Press. New York, 1957, 415–427.
Iken, K., Bluhm, B.A., Gradinger, R., Food web structure in the high Arctic Canada Basin: Evidence from δ13C and δ15N analysis. Polar Biol. 28 (2005), 238–249.
Jackson, A.L., Inger, R., Parnell, A.C., Bearhop, S., Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80 (2011), 595–602.
Kaufman, M.R., Gradinger, R.R., Bluhm, B.A., O'Brien, D.M., Using stable isotopes to assess carbon and nitrogen turnover in the Arctic sympagic amphipod Onisimus litoralis. Oecologia 158 (2008), 11–22.
Kędra, M., Kuliński, K., Walkusz, W., Legezyńska, J., The shallow benthic food web structure in the high Arctic does not follow seasonal changes in the surrounding environment. Estuar. Coast. Shelf Sci. 114 (2012), 183–191.
Kędra, M., Renaud, P.E., Andrade, H., Goszczko, I., Ambrose, W.G., Benthic community structure, diversity, and productivity in the shallow Barents Sea bank (Svalbard Bank). Mar. Biol. 160 (2013), 805–819.
Klein, B., LeBlanc, B., Mei, Z.P., Beret, R., Michaud, J., Mundy, C.J., Von Quillfeldt, C.H., Garneau, M.È., Roy, S., Gratton, Y., Cochran, J.K., Bélanger, S., Larouche, P., Pakulski, J.D., Rivkin, R.B., Legendre, L., 2002. Phytoplankton biomass, production and potential export in the North Water. Deep. Res. Part II Top. Stud. Oceanogr. 49, 4983–5002.
Koch, C.W., Cooper, L.W., Grebmeier, J.M., Frey, K., Brown, T.A., Ice algae resource utilization by benthic macro- And megafaunal communities on the Pacific Arctic shelf determined through lipid biomarker analysis. Mar. Ecol. Prog. Ser. 651 (2020), 23–43.
Kwok, R., Exchange of sea ice between the Arctic Ocean and the Canadian Arctic Archipelago. Geophys. Res. Lett., 33, 2006, L16501.
Lafond, A., Leblanc, K., Quéguiner, B., Moriceau, B., Leynaert, A., Cornet, V., Legras, J., Ras, J., Parenteau, M., Garcia, N., Babin, M., Tremblay, J.É., Late spring bloom development of pelagic diatoms in Baffin Bay. Elem. Sci. Anth., 7, 2019, 44.
Lavoie, D., Macdonald, R.W., Denman, K.L., Primary productivity and export fluxes on the Canadian shelf of the Beaufort Sea: a modelling study. J. Mar. Syst. 75 (2009), 17–32.
Layman, C.A., Arrington, A.D., Montaña, C.G., Post, D.M., Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 89 (2007), 2358–2359.
Le Bourg, B., Kuklinski, P., Balazy, P., Lepoint, G., Michel, L., Interactive effects of body size and environmental gradient on the trophic ecology of sea stars in an Antarctic fjord. Mar. Ecol. Prog. Ser. 674 (2021), 189–202.
Lenth, R., Lenth, M., Package ‘lsmeans’. The American Statistician 34:4 (2018), 216–221.
Leu, E., Søreide, J.E., Hessen, D.O., Falk-Petersen, S., Berge, J., Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog. Oceanogr. 90 (2011), 18–32.
Link, H., Archambault, P., Tamelander, T., Renaud, P.E., Piepenburg, D., Spring-to-summer changes and regional variability of benthic processes in the western Canadian Arctic. Polar Biol. 34 (2011), 2025–2038.
Macdonald, R.W., Carmack, E.C., McLaughlin, F.A., Falkner, K.K., Swift, J.H., Connections among ice, runoff and atmospheric forcing in the Beaufort Gyre. Geophys. Res. Lett. 26 (1999), 2223–2226.
Mäkelä, A., Witte, U., Archambault, P., Benthic macroinfaunal community structure, resource utilisation and trophic relationships in two Canadian Arctic Archipelago polynyas. PLoS One, 12(8), 2017, e0183034.
Martin, J., Dumont, D., Tremblay, J.É., Contribution of subsurface chlorophyll maxima to primary production in the coastal Beaufort Sea (Canadian Arctic): A model assessment. J. Geophys. Res. Ocean. 118 (2013), 5873–5886.
Martínez Del Rio, C., Sabat, P., Anderson-Sprecher, R., Gonzalez, S.P., Dietary and isotopic specialization: the isotopic niche of three cinclodes ovenbirds. Oecologia 161 (2009), 149–159.
McCutchan, J.H., Lewis, W.M., Kendall, C., McGrath, C.C., Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 111, 2003, 416.
McMahon, K.W., Ambrose, W.G., Johnson, B.J., Sun, M.Y., Lopez, G.R., Clough, L.M., Carroll, M.L., Benthic community response to ice algae and phytoplankton in Ny Ålesund. Svalbard. Mar. Ecol. Prog. Ser. 310 (2006), 1–14.
Michel, L.N., Danis, B., Dubois, P., Eleaume, M., Fournier, J., Gallut, C., Jane, P., Lepoint, G., Increased sea ice cover alters food web structure in East Antarctica. Sci. Rep., 9, 2019, 8062.
Middelburg, J.J., Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11 (2014), 2357–2371.
Newsome, D., del Rio, C.M., Bearhop, S., Phillips, D.L., A niche for isotopic ecology. Front. Ecol. Environ. 5 (2007), 429–436.
Norkko, A., Thrush, S.F., Cummings, V.J., Gibbs, M.M., Andrew, N.L., Norkko, J., Schwarz, A.M., Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88 (2007), 2810–2820.
Olive, P.J.W., Pinnegar, J.K., Polunin, N.V.C., Richards, G., Welch, R., Isotope trophic-step fractionation: a dynamic equilibrium model. J. Anim. Ecol. 72 (2003), 608–617.
Perovich, D., Meier, W., Tschudi, M., Hendricks, S., Petty, A.A., Divine, D., Farrell, S., Gerland, S., Haas, C., Kaleschke, L., Pavlova, O., Ricker, R., Tian-Kunze, X., Webster, M., Wood, K., 2020. Sea ice, NOAA Arctic Report Card 2020.
Pineault, S., Tremblay, J.É., Gosselin, M., Thomas, H., Shadwick, E., The isotopic signature of particulate organic C and N in bottom ice: Key influencing factors and applications for tracing the fate of ice-algae in the Arctic Ocean. J. Geophys. Res. Ocean. 118 (2013), 287–300.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., Maintainer, R., 2021. Package ‘nlme’. Linear and nonlinear mixed effects models. version. 2017. 6: 3.1.
Post, D.M., Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83 (2002), 703–718.
Post, D.M., Testing the productive-space hypothesis: Rational and power. Oecologia 153 (2007), 973–984.
Post, E., Implications of earlier sea ice melt for phenological cascades in arctic marine food webs. Food Webs 13 (2017), 60–66.
Post, D.M., Pace, M.L., Halrston, N.G., Ecosystem size determines food-chain length in lakes. Nature 405 (2000), 1047–1049.
Renaud, P.E., Løkken, T.S., Jørgensen, L.L., Berge, J., Johnson, B.J., Macroalgal detritus and food-web subsidies along an Arctic fjord depth-gradient. Front. Mar. Sci., 2, 2015, 31.
Riaux-Gobin, C., Klein, B., Microphytobenthic Biomass Measurement Using HPLC and Conventional Pigment Analysis. Handb. Methods Aquat. Microb. Ecol., 1993, 369–376.
Robinson, M.L., Strauss, S.Y., Generalists are more specialized in low-resource habitats, increasing stability of ecological network structure. PNAS 117 (2020), 2043–2048.
Rontani, J.F., Belt, S.T., Brown, T.A., Amiraux, R., Gosselin, M., Vaultier, F., Mundy, C.J., Monitoring abiotic degradation in sinking versus suspended Arctic sea ice algae during a spring ice melt using specific lipid oxidation tracers. Org Geochem. 98 (2016), 82–97.
Roy, V., Iken, K., Archambault, P., Environmental drivers of the Canadian Arctic megabenthic communities. PLoS One, 9(7), 2014, e100900.
Roy, V., Iken, K., Gosselin, M., Tremblay, J.É., Bélanger, S., Archambault, P., Benthic faunal assimilation pathways and depth-related changes in food-web structure across the Canadian Arctic. Deep. Res. Part I Oceanogr. Res. Pap. 102 (2015), 55–71.
Saeedi, H., Warren, D., Brandt, A., The Environmental Drivers of Benthic Fauna Diversity and Community Composition. Front. Mar. Sci., 9, 2022, 804019.
Shipley, O.N., Matich, P., Studying animal niches using bulk stable isotope ratios: an updated synthesis. Oecologia 193 (2020), 27–51.
Sokołowski, A., Wołowicz, M., Asmus, H., Asmus, R., Carlier, A., Gasiunaité, Z., Grémare, A., Hummel, H., Lesutiené, J., Razinkovas, A., Renaud, P.E., Richard, P., Kedra, M., Is benthic food web structure related to diversity of marine macrobenthic communities?. Estuar. Coast. Shelf Sci. 108 (2012), 76–86.
Stasko, A.D., Bluhm, B.A., Michel, C., Archambault, P., Majewski, A., Reist, J.D., Swanson, H., Power, M., Benthic-pelagic trophic coupling in an Arctic marine food web along vertical water mass and organic matter gradients. Mar. Ecol. Prog. Ser. 594 (2018), 1–19.
Stasko, A.D., Bluhm, B.A., Reist, J.D., Swanson, H., Power, M., Relationships between depth and δ15N of Arctic benthos vary among regions and trophic functional groups. Deep Res. Part I Oceanogr. Res. Pap. 135 (2018), 56–64.
Stein, R., Macdonald, R.W., The Organic Carbon Cycle in the Arctic Ocean. Springer, Berlin, Heidelberg., 2004, 10.1007/978-3-642-18912-8_3.
Stirling, I., The importance of polynyas, ice edges, and leads to marine mammals and birds. J. Mar. Syst. 10 (1997), 9–21.
Stroeve, J.C., Markus, T., Boisvert, L., Miller, J., Barrett, A., Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett. 41 (2014), 1216–1225.
Sun, M., Johnson, B., Clough, L., Carroll, M., McMahon, K., Lopez, G., Ambrose, W.G., Benthic community response to ice algae and phytoplankton in Ny Ålesund. Svalbard. Mar. Ecol. Prog. Ser. 310 (2006), 1–14.
Takimoto, G., Post, D.M., Spiller, D.A., Holt, R.D., Effects of productivity, disturbance, and ecosystem size on food-chain length: Insights from a metacommunity model of intraguild predation. Ecol. Res. 27 (2012), 481–493.
Tang, C.C.L., Ross, C.K., Yao, T., Petrie, B., DeTracey, B.M., Dunlap, E., The circulation, water masses and sea-ice of Baffin Bay. Prog. Oceanogr. 63 (2004), 183–228.
Tremblay, J.É., Hattori, H., Michel, C., Ringuette, M., Mei, Z.P., Lovejoy, C., Fortier, L., Hobson, K.A., Amiel, D., Cochran, K., Trophic structure and pathways of biogenic carbon flow in the eastern North Water Polynya. Prog. Oceanogr. 71 (2006), 402–425.
Tremblay, J.É., Michel, C., Hobson, K.A., Gosselin, M., Price, N.M., Bloom dynamics in early opening waters of the Arctic Ocean. Limnol. Oceanogr. 51 (2006), 900–912.
Vander Zanden, M.J., Rasmussen, J.B., Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46 (2001), 2061–2066.
Vilas, D., Coll, M., Pedersen, T., Corrales, X., Filbee-Dexter, K., Pedersen, M.F., Norderhaug, K.M., Fredriksen, S., Wernberg, T., Ramírez-Llodra, E., Kelp-carbon uptake by Arctic deep-sea food webs plays a noticeable role in maintaining ecosystem structural and functional traits. J. Mar. Syst., 203, 2020, 10326.
Wang, S., Su, L.H., Luo, B.K., Qin, Y.J., Stewart, S.D., Tang, J.P., Wang, T.T., Yang, Y., Cheng, G., Stable isotopes reveal effects of natural drivers and anthropogenic pressures on isotopic niches of invertebrate communities in a large subtropical river of China. Environ. Sci. Pollut. Res. 27 (2020), 36132–36146.
Ward, C.L., McCann, K.S., A mechanistic theory for aquatic food chain length. Nat. Commun., 8, 2017, 2028.
Weems, J., Iken, K., Gradinger, R., Wooller, M.J., Carbon and nitrogen assimilation in the Bering Sea clams Nuculana radiata and Macoma moesta. J. Exp. Mar. Bio. Ecol. 430–431 (2012), 32–42.
Welch, H.E., Bergmann, M.A., Siferd, T.D., Martin, K.A., Curtis, M.F., Crawford, R.E., Conover, R.J., Hop, H., Welch, H.E., Bergmann, M.A., Siferd, T.D., Martin, K.A., Curtis, M.F., Crawford, R.E., Conover, R.J., Hop, H., Energy Flow through the Marine Ecosystem of the Lancaster Sound Region, Arctic Canada. Arct. Inst. North Am. 45 (1992), 343–357.
Yunda-Guarin, G., Brown, T.A., Michel, L.N., Saint-Béat, B., Amiraux, R., Nozais, C., Archambault, P., Reliance of deep-sea benthic macrofauna on ice-derived organic matter highlighted by multiple trophic markers during spring in Baffin Bay. Canadian Arctic. Elem. Sci. Anthr., 8, 2020, 1.
Yunda-Guarin, G., Michel, L., Nozais, C., Archambault, P., Interspecific differences in feeding selectivity shape isotopic niche structure of three ophiuroids in the Arctic Ocean. Mar. Ecol. Prog. Ser. 683 (2022), 81–95.
Zuur, A.F., Ieno, E.N., Smith, G.M., 2007. Analysing Ecological Data. Springer New York. https://doi.org/10.1007/978-0-387-45972-1. New York.