[en] Configurational and conformational assignments of 11 Corynanthe-Tryptamine alkaloids ( usambarane skeleton) were performed based on the correlation of the high level calculated and experimental H and C 13 NMR chemical shifts. for some compounds, the reassignment of a number of individual signals together with spectral assignments of experimentally unresolved peaks was suggested. the different conformations of the C/D quinolizidine ring system appear strictly dependent of the structure of the side chain ( ethyl, vinyl or ethylidenic ) ; in the latter case , the configuration ( E or Z) of the 19-20 double bond of the ethylidenic chain is determinant to establish a cis- or a trans-quinolizidine system of rings C/D. The conformation is also influenced by the equatorial or axial conformation of C_15) substituents.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Chemistry Pharmacy, pharmacology & toxicology
Author, co-author :
Grigoriev, Dimitri; Siberian Branch of the Russian Academy of Sciences, Irkutsk > Institute of chemistry
Semenov, Valentin A.; Siberian Branch of the Russian academy of Sciences, Irkutsk > Chemistry
Angenot, Luc ; Université de Liège - ULiège > Département de pharmacie
Krivdin, Leonid B.; Siberian Branch of the Academy of Sciences, Irkutsk > Chemistry
Language :
English
Title :
Configurational and Conformational Studies of Quinolizidine and Beta-Carboline Moieties in the Corynanthe-Tryptamine Alkaloids
Publication date :
01 January 2025
Journal title :
International Journal of Quantum Chemistry
ISSN :
0020-7608
eISSN :
1097-461X
Publisher :
John Wiley & Sons, Hoboken, United States - New Jersey
D. A. Grigoriev, V. A. Semenov, L. Angenot, and L. B. Krivdin, “Stereochemical and NMR Computational Study of Some Natural Dimeric Bisindole Alkaloids,” International Journal of Quantum Chemistry 124 (2024): e27323.
N. G. Bisset, “Arrow and Dart Poisons,” Journal of Ethnopharmacology 25 (1989): 1–41.
L. Angenot, Thesis—Contribution to the Study of Strychnos usambarensis GILG, Main Ingredient of an African Curarizing Arrow Poison (French Text) (Liège, Belgium: University of Liège, 1973).
L. Angenot, M. Dubois, C. Ginion, W. van Dorsser, and A. Dresse, “Chemical Structure and Pharmacological (Curarizing) Properties of Various Indole Alkaloids Extracted From an African Strychnos,” Archives Internationales de Pharmacodynamie et de Thérapie 215 (1975): 246–258.
L. Angenot and N. G. Bisset, “Isolement et structure de nouveaux alcaloïdes extraits du Strychnos usambarensis du Rwanda,” Journal de Pharmacie de Belgique 26 (1971): 585–588.
G. Massiot, P. Thépenier, M. J. Jacquier, et al., “Further Alkaloids From Strychnos longicaudata and Strychnos ngouniensis,” Tetrahedron 39 (1983): 3645–3656.
G. Massiot, P. Thepenier, M. J. Jacquier, L. Le Men-Olivier, and J. Le Men, “Alkaloids From Roots of Strychnos potatorum,” Phytochemistry 31 (1992): 2873–2876.
R. Verpoorte, G. Massiot, M. J. Jacquier, P. Thépenier, and L. Le Men Olivier, “New Semidimeric Alkaloids From Strychnos dale,” Tetrahedron Letters 27 (1986): 239–242.
G. M. T. Robert, A. Ahond, C. Poupat, P. Potier, and H. Jacquemin, “Aspidosperma de Guyane: Alcaloïdes de Aspidosperma marcgravianum,” Journal of Natural Products 46 (1983): 694–707.
C. W. Wright, D. Allen, Y. Cai, et al., “Selective Antiprotozoal Activity of Some Strychnos Alkaloids,” Phytotherapy Research 8 (1994): 149–152.
M. Frederich, M. P. Hayette, M. Tits, P. De Mol, and L. Angenot, “In Vitro Activities of Strychnos Alkaloids and Extracts Against Plasmodium falciparum,” Antimicrobial Agents and Chemotherapy 43 (1999): 2328–2331.
C. Passemar, M. Saléry, P. Njommang Soh, et al., “Indole and Aminoimidazole Moieties Appear as Key Structural Units in Antiplasmodial Molecules,” Phytomedicine 18 (2012): 1118–1125.
M. Frédérich, M. Tits, E. Goffin, et al., “In Vitro and In Vivo Antimalarial Properties of Isostrychnopentamine, an Indolomonoterpenic Alkaloid From Strychnos usambarensis,” Planta Medica 70 (2004): 520–525.
L. Dassonneville, N. Wattez, C. Mahieu, et al., “The Plant Alkaloid Usambarensine Intercalates Into DNA and Induces Apoptosis in Human HL60 Leukemia Cells,” Anticancer Research 19 (1999): 5245–5250.
M. Frederich, M. Bentires, M. Tits, et al., “Isostrychnopentamine, an Indolomonoterpenic Alkaloid From Strychnos usambarensis, Induces Cell Cycle Arrest and Apoptosis in Human Colon Cancer Cells,” Journal of Pharmacology and Experimental Therapeutics 304 (2002): 1103–1110.
E. Saidou Balde, V. Mégalizzi, M. Cao, et al., “Isostrychnopentamine, an Indolomonoterpenic Alkaloid From Strychnos usambarensis, With Potential Anti-Tumor Activity Against Apoptosis-Resistant Cancer Cells,” International Journal of Oncology 36 (2010): 961–965.
K. Rachwał, I. Niedźwiedź, A. Waśko, et al., “Red Kale (Brassica oleracea L. Ssp. Acephala L. Var. Sabellica) Induces Apoptosis in Human Colorectal Cancer Cells in Vitro,” Molecules 28 (2023): 6938.
Y. Zhang, X. Liu, X. Li, et al., “Physicochemical Properties and Antibiosis Activity of the Pink Pigment of Erwinia persicina Cp2,” Agriculture 12 (2022): 1641.
R. O. Trevisan, M. M. Santos, C. S. Desidério, et al., “In Silico Identification of New Targets for Diagnosis, Vaccine, and Drug Candidates Against Trypanosoma cruzi,” Disease Markers 9130719 (2020): 1–15.
O. M. Ogunyemi, G. A. Gyebi, A. A. Elfiky, S. O. Afolabi, A. P. Adegunloye, and I. M. Ibrahim, “Alkaloids and Flavonoids From African Phytochemicals as Potential Inhibitors of SARS-Cov-2 RNA-Dependent RNA Polymerase: An In Silico Perspective,” Antiviral Chemistry & Chemotherapy 28 (2020): 1–15.
A. Bagno and G. Saielli, “Addressing the Stereochemistry of Complex Organic Molecules by Density Functional Theory-NMR,” WIREs Computational Molecular Science 5 (2015): 228–240.
F. V. Toukach and V. P. Ananikov, “Recent Advances in Computational Predictions of NMR Parameters for the Structure Elucidation of Carbohydrates: Methods and Limitations,” Chemical Society Reviews 42 (2013): 8376–8415.
N. Grimblat and A. M. Sarotti, “Computational Chemistry to the Rescue: Modern Toolboxes for the Assignment of Complex Molecules by GIAO NMR Calculations,” Chemistry 22 (2016): 12246–12261.
W. Hehre, P. Klunzinger, B. Deppmeier, et al., “Efficient Protocol for Accurately Calculating 13C Chemical Shifts of Conformationally Flexible Natural Products: Scope, Assessment, and Limitations,” Journal of Natural Products 82 (2019): 2299–2306.
M. W. Lodewyk, M. R. Siebert, and D. J. Tantillo, “Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry,” Chemical Reviews 112 (2012): 1839–1862.
F. L. P. Costa, A. C. F. de Albuquerque, R. G. Fiorot, et al., “Structural Characterisation of Natural Products by Means of Quantum Chemical Calculations of NMR Parameters: New Insights,” Organic Chemistry Frontiers 8 (2021): 2019–2058.
V. A. Semenov and L. B. Krivdin, “Computational NMR of Natural Products,” Russian Chemical Reviews 91 (2022): RCR5027.
Z. Zeng, G. Kociok-Köhn, T. J. Woodman, M. G. Rowan, and I. S. Blagbrough, “Structural Studies of Norditerpenoid Alkaloids: Conformation Analysis in Crystal and in Solution States,” European Journal of Organic Chemistry 2021 (2021): 2169–2179.
L. B. Krivdin, “Computational 1H and 13C NMR in Structural and Stereochemical Studies,” Magnetic Resonance in Chemistry 60 (2022): 733–828.
L. B. Krivdin, “Computational Protocols for Calculating 13C NMR Chemical Shifts,” Progress in Nuclear Magnetic Resonance Spectroscopy 112–113 (2019): 103–156.
L. B. Krivdin, “Computational 1H NMR: Part 1. Theoretical Background,” Magnetic Resonance in Chemistry 57 (2019): 897–914.
L. B. Krivdin, “Computational 1H NMR: Part 2. Chemical Applications,” Magnetic Resonance in Chemistry 58 (2020): 5–14.
L. B. Krivdin, “Computational 1H NMR: Part 3. Biochemical Studies,” Magnetic Resonance in Chemistry 58 (2020): 15–30.
Schrodinger Release, “Maestro; Schrodinger, LLC,” (2018) New York, NY, USA, https://www.schrodinger.com/freemaestro.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., “Gaussian 09, Revision, C.01,” (2009) Gaussian, Inc.: Wallingford, CT, USA, http://www.gaussian.com.
Y. Y. Rusakov, Y. A. Nikurashina, and I. L. Rusakova, “On the Utmost Importance of the Geometry Factor of Accuracy in the Quantum Chemical Calculations of 31P NMR Chemical Shifts: New Efficient pecG-n (n = 1, 2) Basis Sets for the Geometry Optimization Procedure,” Journal of Chemical Physics 160 (2024): 084109.
Y. Y. Rusakov, V. A. Semenov, and I. L. Rusakova, “Quelling the Geometry Factor Effect in Quantum Chemical Calculations of 13C NMR Chemical Shifts With the Aid of the pecG-n (n = 1, 2) Basis Sets,” International Journal of Molecular Sciences 25 (2024): 10588.
Y. Zhao and D. G. Truhlar, “The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals,” Theoretical Chemistry Accounts 120 (2008): 215–241.
J. Tomasi, B. Mennucci, and E. Cances, “The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM Ab Initio Level,” THEOCHEM 464 (1999): 211–226.
J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum solvation models,” Chemical Reviews 105 (2005): 2999–3093.
O. Dideberg, L. Dupont, and L. Angenot, “Determination de la structure cristalline et de la configuration absolue d'un dérivé de l'usambarensine,” Acta Cryst B31 (1975): 1571–1575.
C. Coune, L. Angenot, and J. Denoël, “13C NMR des alcaloïdes des Strychnos: Les dérivés de l'harmane et de l'usambarensine,” Phytochemistry 19 (1980): 2009–2011.
H. Seki, A. Hashimoto, and T. Hino, “The 1H- and 13C-Nuclear Magnetic Resonance Spectra of Harman. Reinvestigation of the Assignments by One- and Two-Dimensional Methods,” Chemical & Pharmaceutical Bulletin 41 (1993): 1169–1172.
K. Yamada, K. Aoki, and D. Uemura, “Synthesis and Stereochemistry of (+−)-3′,4′-Dihydrousambarensine,” Journal of Organic Chemistry 40 (1975): 2572–2573.
C. Richard, C. Delaude, L. Le Men-Olivier, and J. Le Men, “Alcaloïdes du Strychnos tchibangensis,” Phytochemistry 17 (1978): 539–541.
M. Fréderich, M. Tits, M.-P. Hayette, et al., “10'-Hydroxyusambarensine, a New Antimalarial Bisindole Alkaloid From the Roots of Strychnos usambarensis,” Journal of Natural Products 62 (1999): 619–623.
D. Tavernier, W. Zhang, L. Angenot, M. Chierici-Tits, and J. Leclercq, “The Structure of Isostrychnopentamine, a Bisindole Monoterpene Alkaloid From Strychnos usambarensis,” Phytochemistry 26 (1987): 557–560.
L. Dupont, J. Lamotte-Brasseur, O. Dideberg, H. Campsteyn, M. Vermeire, and L. Angenot, “La structure cristalline et moléculaire d'un nouvel alcaloïde bisindolique: la Strychnopentamine C35H43N5O,” Acta Cryst B33 (1977): 1801–1807.
C. Adamo and V. Barone, “Toward Chemical Accuracy in the Computation of NMR Shieldings: The PBE0 Model,” Chemical Physics Letters 298 (1998): 113–119.
Y. Rusakov and I. L. Rusakova, “New pecS-n (n = 1, 2) Basis Sets for Quantum Chemical Calculations of the NMR Chemical Shifts of H, C, N, and O Nuclei,” Journal of Chemical Physics 156 (2022): 244112.
Y. Y. Rusakov, V. A. Semenov, and I. L. Rusakova, “On the Efficiency of the Density Functional Theory (DFT)-based Computational Protocol for 1H and 13C Nuclear Magnetic Resonance (NMR) Chemical Shifts of Natural Products: Studying the Accuracy of the pecS-n (n = 1, 2) Basis Sets,” International Journal of Molecular Sciences 24 (2023): 14623.
V. A. Semenov and L. B. Krivdin, “Simple and Versatile Scheme for the Stereochemical Identification of Natural Products and Diverse Organic Compounds With Multiple Asymmetric Centers,” Journal of Physical Chemistry A 125 (2021): 10359–10372.
R. Eckermann and T. Gaich, “The Double Bond Configuration of Corynanthean Alkaloids and Its Impact on Monoterpenoid Indole Alkaloid Biosynthesis,” Chemistry—A European Journal 22 (2016): 5749–5755.