[en] Ubiquitination is an important post-translational modification (PTM) that regulates a large spectrum of cellular processes in eukaryotes. Abnormalities in ubiquitin signaling underlie numerous human pathologies including cancer and neurodegeneration. Much progress has been made during the last three decades in understanding how ubiquitin ligases recognize their substrates and how ubiquitination is orchestrated. Several mechanisms of regulation have evolved to prevent promiscuity including the assembly of ubiquitin ligases in multi-protein complexes with dedicated subunits and specific post-translational modifications of these enzymes and their co-factors. Here, we outline another layer of complexity involving the coordinated access of E3 ligases to substrates. We provide an extensive inventory of ubiquitination crosstalk with multiple PTMs including SUMOylation, phosphorylation, methylation, acetylation, hydroxylation, prolyl isomerization, PARylation, and O-GlcNAcylation. We discuss molecular mechanisms by which PTMs orchestrate ubiquitination, thus increasing its specificity as well as its crosstalk with other signaling pathways to ensure cell homeostasis.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Barbour, Haithem; Biomedical Sciences Programs, University of Montreal, Montreal, QC H3C 3T5, Canada ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Nkwe, Nadine Sen; Molecular Biology Programs, University of Montreal, Montreal, QC H3A 0G4, Canada ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Estavoyer, Benjamin; Molecular Biology Programs, University of Montreal, Montreal, QC H3A 0G4, Canada ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Messmer, Clémence; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Gushul-Leclaire, Mila; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Villot, Romain; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Uriarte, Maxime ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Boulay, Karine; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Hlayhel, Sari; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Farhat, Bassel; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Milot, Eric ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Department of Medicine, University of Montréal, Montreal, QC H3C 3J7, Canada
Mallette, Frédérick A; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Department of Medicine, University of Montréal, Montreal, QC H3C 3J7, Canada
Daou, Salima; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
Affar, El Bachir ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Department of Medicine, University of Montréal, Montreal, QC H3C 3J7, Canada
Oh, E., Akopian, D., Rape, M., Principles of ubiquitin-dependent signaling. Annu. Rev. Cell Dev. Biol. 34 (2018), 137–162, 10.1146/annurev-cellbio-100617-062802.
Estavoyer, B., Messmer, C., Echbicheb, M., Rudd, C.E., Milot, E., Affar, E.B., Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. J. Biol. Chem., 298, 2022, 102198, 10.1016/j.jbc.2022.102198.
Grabbe, C., Husnjak, K., Dikic, I., The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol. 12 (2011), 295–307, 10.1038/nrm3099.
Flotho, A., Melchior, F., Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 82 (2013), 357–385, 10.1146/annurev-biochem-061909-093311.
Chen, Z., Hagler, J., Palombella, V.J., Melandri, F., Scherer, D., Ballard, D., Maniatis, T., Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev. 9 (1995), 1586–1597, 10.1101/gad.9.13.1586.
Scherer, D.C., Brockman, J.A., Chen, Z., Maniatis, T., Ballard, D.W., Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92 (1995), 11259–11263, 10.1073/pnas.92.24.11259.
Alkalay, I., Yaron, A., Hatzubai, A., Orian, A., Ciechanover, A., Ben-Neriah, Y., Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 92 (1995), 10599–10603, 10.1073/pnas.92.23.10599.
Tatham, M.H., Geoffroy, M.C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, E.G., Palvimo, J.J., Hay, R.T., RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 10 (2008), 538–546, 10.1038/ncb1716.
Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S., Nasr, R., Lei, M., Peres, L., Zhou, J., Zhu, J., Raught, B., de Thé, H., Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 10 (2008), 547–555, 10.1038/ncb1717.
Rojas-Fernandez, A., Plechanovová, A., Hattersley, N., Jaffray, E., Tatham, M.H., Hay, R.T., SUMO chain-induced dimerization activates RNF4. Mol. Cell 53 (2014), 880–892, 10.1016/j.molcel.2014.02.031.
Plechanovová, A., Jaffray, E.G., McMahon, S.A., Johnson, K.A., Navrátilová, I., Naismith, J.H., Hay, R.T., Mechanism of ubiquitylation by dimeric RING ligase RNF4. Nat. Struct. Mol. Biol. 18 (2011), 1052–1059, 10.1038/nsmb.2108.
Kamitani, T., Kito, K., Nguyen, H.P., Yeh, E.T., Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J. Biol. Chem. 272 (1997), 28557–28562.
Ohh, M., Kim, W.Y., Moslehi, J.J., Chen, Y., Chau, V., Read, M.A., Kaelin, W.G. Jr., An intact NEDD8 pathway is required for Cullin-dependent ubiquitylation in mammalian cells. EMBO Rep. 3 (2002), 177–182, 10.1093/embo-reports/kvf028.
Sakata, E., Yamaguchi, Y., Miyauchi, Y., Iwai, K., Chiba, T., Saeki, Y., Matsuda, N., Tanaka, K., Kato, K., Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity. Nat. Struct. Mol. Biol. 14 (2007), 167–168, 10.1038/nsmb1191.
Liu, J., Furukawa, M., Matsumoto, T., Xiong, Y., NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol. Cell 10 (2002), 1511–1518.
Zuo, W., Huang, F., Chiang, Y.J., Li, M., Du, J., Ding, Y., Zhang, T., Lee, H.W., Jeong, L.S., Chen, Y., et al. c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-beta type II receptor. Mol. Cell 49 (2013), 499–510, 10.1016/j.molcel.2012.12.002.
Di Guglielmo, G.M., Le Roy, C., Goodfellow, A.F., Wrana, J.L., Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat. Cell Biol. 5 (2003), 410–421, 10.1038/ncb975.
Lee, G.W., Park, J.B., Park, S.Y., Seo, J., Shin, S.H., Park, J.W., Kim, S.J., Watanabe, M., Chun, Y.S., The E3 ligase C-CBL inhibits cancer cell migration by neddylating the proto-oncogene c-Src. Oncogene 37 (2018), 5552–5568, 10.1038/s41388-018-0354-5.
Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G., Jentsch, S., RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419 (2002), 135–141, 10.1038/nature00991.
Stelter, P., Ulrich, H.D., Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425 (2003), 188–191, 10.1038/nature01965.
Haracska, L., Torres-Ramos, C.A., Johnson, R.E., Prakash, S., Prakash, L., Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell Biol. 24 (2004), 4267–4274.
Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C., Jentsch, S., SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436 (2005), 428–433, 10.1038/nature03665.
Papouli, E., Chen, S., Davies, A.A., Huttner, D., Krejci, L., Sung, P., Ulrich, H.D., Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19 (2005), 123–133, 10.1016/j.molcel.2005.06.001.
Armstrong, A.A., Mohideen, F., Lima, C.D., Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483 (2012), 59–63, 10.1038/nature10883.
Kannouche, P.L., Wing, J., Lehmann, A.R., Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14 (2004), 491–500, 10.1016/s1097-2765(04)00259-x.
Acharya, N., Yoon, J.H., Gali, H., Unk, I., Haracska, L., Johnson, R.E., Hurwitz, J., Prakash, L., Prakash, S., Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis. Proc. Natl. Acad. Sci. USA 105 (2008), 17724–17729, 10.1073/pnas.0809844105.
Branzei, D., Vanoli, F., Foiani, M., SUMOylation regulates Rad18-mediated template switch. Nature 456 (2008), 915–920, 10.1038/nature07587.
Weston, R., Peeters, H., Ahel, D., ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev. 26 (2012), 1558–1572, 10.1101/gad.193516.112.
Ciccia, A., Nimonkar, A.V., Hu, Y., Hajdu, I., Achar, Y.J., Izhar, L., Petit, S.A., Adamson, B., Yoon, J.C., Kowalczykowski, S.C., et al. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol. Cell 47 (2012), 396–409, 10.1016/j.molcel.2012.05.024.
Vujanovic, M., Krietsch, J., Raso, M.C., Terraneo, N., Zellweger, R., Schmid, J.A., Taglialatela, A., Huang, J.W., Holland, C.L., Zwicky, K., et al. Replication fork slowing and reversal upon DNA damage require PCNA polyubiquitination and ZRANB3 DNA translocase activity. Mol. Cell 67 (2017), 882–890.e5, 10.1016/j.molcel.2017.08.010.
Masuda, Y., Mitsuyuki, S., Kanao, R., Hishiki, A., Hashimoto, H., Masutani, C., Regulation of HLTF-mediated PCNA polyubiquitination by RFC and PCNA monoubiquitination levels determines choice of damage tolerance pathway. Nucleic Acids Res. 46 (2018), 11340–11356, 10.1093/nar/gky943.
Guan, J., Yu, S., Zheng, X., NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase eta in response to oxidative DNA damage. Protein Cell 9 (2018), 365–379, 10.1007/s13238-017-0455-x.
Park, J.M., Yang, S.W., Yu, K.R., Ka, S.H., Lee, S.W., Seol, J.H., Jeon, Y.J., Chung, C.H., Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis. Mol. Cell 54 (2014), 626–638, 10.1016/j.molcel.2014.03.031.
Hermann, M., Bogunovic, D., ISG15: in sickness and in health. Trends Immunol. 38 (2017), 79–93, 10.1016/j.it.2016.11.001.
Perng, Y.C., Lenschow, D.J., ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 16 (2018), 423–439, 10.1038/s41579-018-0020-5.
Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., Elledge, S.J., SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif. Cell 86 (1996), 263–274.
Sheaff, R.J., Groudine, M., Gordon, M., Roberts, J.M., Clurman, B.E., Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 11 (1997), 1464–1478.
Tsvetkov, L.M., Yeh, K.H., Lee, S.J., Sun, H., Zhang, H., p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr. Biol. 9 (1999), 661–664.
Carrano, A.C., Eytan, E., Hershko, A., Pagano, M., SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. 1 (1999), 193–199.
Ganoth, D., Bornstein, G., Ko, T.K., Larsen, B., Tyers, M., Pagano, M., Hershko, A., The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat. Cell Biol. 3 (2001), 321–324, 10.1038/35060126.
Hao, B., Zheng, N., Schulman, B.A., Wu, G., Miller, J.J., Pagano, M., Pavletich, N.P., Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol. Cell 20 (2005), 9–19, 10.1016/j.molcel.2005.09.003.
Chu, I., Sun, J., Arnaout, A., Kahn, H., Hanna, W., Narod, S., Sun, P., Tan, C.K., Hengst, L., Slingerland, J., p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell 128 (2007), 281–294, 10.1016/j.cell.2006.11.049.
Rath, S.L., Senapati, S., Mechanism of p27 unfolding for CDK2 reactivation. Sci. Rep., 6, 2016, 26450, 10.1038/srep26450.
Huntwork-Rodriguez, S., Wang, B., Watkins, T., Ghosh, A.S., Pozniak, C.D., Bustos, D., Newton, K., Kirkpatrick, D.S., Lewcock, J.W., JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. J. Cell Biol. 202 (2013), 747–763, 10.1083/jcb.201303066.
Symington, L.S., Gautier, J., Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45 (2011), 247–271, 10.1146/annurev-genet-110410-132435.
Zimmermann, M., de Lange, T., 53BP1: pro choice in DNA repair. Trends Cell Biol. 24 (2014), 108–117, 10.1016/j.tcb.2013.09.003.
Ceccaldi, R., Rondinelli, B., D'Andrea, A.D., Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26 (2016), 52–64, 10.1016/j.tcb.2015.07.009.
Orthwein, A., Noordermeer, S.M., Wilson, M.D., Landry, S., Enchev, R.I., Sherker, A., Munro, M., Pinder, J., Salsman, J., Dellaire, G., et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature 528 (2015), 422–426, 10.1038/nature16142.
Lu, H., Shamanna, R.A., de Freitas, J.K., Okur, M., Khadka, P., Kulikowicz, T., Holland, P.P., Tian, J., Croteau, D.L., Davis, A.J., Bohr, V.A., Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nat. Commun., 8, 2017, 2039, 10.1038/s41467-017-02146-3.
Verdin, E., Ott, M., 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16 (2015), 258–264, 10.1038/nrm3931.
Narita, T., Weinert, B.T., Choudhary, C., Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20 (2019), 156–174, 10.1038/s41580-018-0081-3.
Li, M., Luo, J., Brooks, C.L., Gu, W., Acetylation of p53 inhibits its ubiquitination by Mdm2. J. Biol. Chem. 277 (2002), 50607–50611, 10.1074/jbc.C200578200.
Ito, A., Kawaguchi, Y., Lai, C.H., Kovacs, J.J., Higashimoto, Y., Appella, E., Yao, T.P., MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 21 (2002), 6236–6245.
Boriack-Sjodin, P.A., Swinger, K.K., Protein methyltransferases: a distinct, diverse, and dynamic family of enzymes. Biochemistry 55 (2016), 1557–1569, 10.1021/acs.biochem.5b01129.
Cheng, X., Collins, R.E., Zhang, X., Structural and sequence motifs of protein (histone) methylation enzymes. Annu. Rev. Biophys. Biomol. Struct. 34 (2005), 267–294, 10.1146/annurev.biophys.34.040204.144452.
Nishiyama, A., Yamaguchi, L., Sharif, J., Johmura, Y., Kawamura, T., Nakanishi, K., Shimamura, S., Arita, K., Kodama, T., Ishikawa, F., et al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 502 (2013), 249–253, 10.1038/nature12488.
Arita, K., Isogai, S., Oda, T., Unoki, M., Sugita, K., Sekiyama, N., Kuwata, K., Hamamoto, R., Tochio, H., Sato, M., et al. Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proc. Natl. Acad. Sci. USA 109 (2012), 12950–12955, 10.1073/pnas.1203701109.
Rothbart, S.B., Krajewski, K., Nady, N., Tempel, W., Xue, S., Badeaux, A.I., Barsyte-Lovejoy, D., Martinez, J.Y., Bedford, M.T., Fuchs, S.M., et al. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat. Struct. Mol. Biol. 19 (2012), 1155–1160, 10.1038/nsmb.2391.
Rothbart, S.B., Dickson, B.M., Ong, M.S., Krajewski, K., Houliston, S., Kireev, D.B., Arrowsmith, C.H., Strahl, B.D., Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev. 27 (2013), 1288–1298, 10.1101/gad.220467.113.
Harrison, J.S., Cornett, E.M., Goldfarb, D., DaRosa, P.A., Li, Z.M., Yan, F., Dickson, B.M., Guo, A.H., Cantu, D.V., Kaustov, L., et al. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. Elife, 5, 2016, e17101, 10.7554/eLife.17101.
DaRosa, P.A., Harrison, J.S., Zelter, A., Davis, T.N., Brzovic, P., Kuhlman, B., Klevit, R.E., A bifunctional role for the UHRF1 UBL domain in the control of hemi-methylated DNA-dependent histone ubiquitylation. Mol. Cell 72 (2018), 753–765.e6, 10.1016/j.molcel.2018.09.029.
Lee, J.M., Lee, J.S., Kim, H., Kim, K., Park, H., Kim, J.Y., Lee, S.H., Kim, I.S., Kim, J., Lee, M., et al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol. Cell 48 (2012), 572–586, 10.1016/j.molcel.2012.09.004.
He, Y.J., McCall, C.M., Hu, J., Zeng, Y., Xiong, Y., DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev. 20 (2006), 2949–2954, 10.1101/gad.1483206.
Bedford, M.T., Clarke, S.G., Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33 (2009), 1–13, 10.1016/j.molcel.2008.12.013.
Hu, D., Gur, M., Zhou, Z., Gamper, A., Hung, M.C., Fujita, N., Lan, L., Bahar, I., Wan, Y., Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat. Commun., 6, 2015, 8419, 10.1038/ncomms9419.
Yang, X., Qian, K., Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18 (2017), 452–465, 10.1038/nrm.2017.22.
Hardivillé, S., Hart, G.W., Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metabol. 20 (2014), 208–213, 10.1016/j.cmet.2014.07.014.
Mohawk, J.A., Green, C.B., Takahashi, J.S., Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35 (2012), 445–462, 10.1146/annurev-neuro-060909-153128.
Lowrey, P.L., Takahashi, J.S., Genetics of circadian rhythms in Mammalian model organisms. Adv. Genet. 74 (2011), 175–230, 10.1016/B978-0-12-387690-4.00006-4.
Udeshi, N.D., Svinkina, T., Mertins, P., Kuhn, E., Mani, D.R., Qiao, J.W., Carr, S.A., Refined preparation and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol. Cell. Proteomics 12 (2013), 825–831, 10.1074/mcp.O112.027094.
Lee, J.M., Dedhar, S., Kalluri, R., Thompson, E.W., The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 172 (2006), 973–981, 10.1083/jcb.200601018.
Xu, Y., Lee, S.H., Kim, H.S., Kim, N.H., Piao, S., Park, S.H., Jung, Y.S., Yook, J.I., Park, B.J., Ha, N.C., Role of CK1 in GSK3beta-mediated phosphorylation and degradation of snail. Oncogene 29 (2010), 3124–3133, 10.1038/onc.2010.77.
Zhou, B.P., Deng, J., Xia, W., Xu, J., Li, Y.M., Gunduz, M., Hung, M.C., Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 6 (2004), 931–940, 10.1038/ncb1173.
Park, S.Y., Kim, H.S., Kim, N.H., Ji, S., Cha, S.Y., Kang, J.G., Ota, I., Shimada, K., Konishi, N., Nam, H.W., et al. Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition. EMBO J. 29 (2010), 3787–3796, 10.1038/emboj.2010.254.
Ma, X., Liu, H., Li, J., Wang, Y., Ding, Y.H., Shen, H., Yang, Y., Sun, C., Huang, M., Tu, Y., et al. Poleta O-GlcNAcylation governs genome integrity during translesion DNA synthesis. Nat. Commun., 8, 2017, 1941, 10.1038/s41467-017-02164-1.
Xu, C., Ng, D.T.W., Glycosylation-directed quality control of protein folding. Nat. Rev. Mol. Cell Biol. 16 (2015), 742–752, 10.1038/nrm4073.
Ruggiano, A., Foresti, O., Carvalho, P., Quality control: ER-associated degradation: protein quality control and beyond. J. Cell Biol. 204 (2014), 869–879, 10.1083/jcb.201312042.
Braakman, I., Hebert, D.N., Protein folding in the endoplasmic reticulum. Cold Spring Harbor Perspect. Biol., 5, 2013, a013201, 10.1101/cshperspect.a013201.
Clerc, S., Hirsch, C., Oggier, D.M., Deprez, P., Jakob, C., Sommer, T., Aebi, M., Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J. Cell Biol. 184 (2009), 159–172, 10.1083/jcb.200809198.
Gauss, R., Kanehara, K., Carvalho, P., Ng, D.T.W., Aebi, M., A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol. Cell 42 (2011), 782–793, 10.1016/j.molcel.2011.04.027.
Liu, Y.C., Fujimori, D.G., Weissman, J.S., Htm1p-Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation. Proc. Natl. Acad. Sci. USA 113 (2016), E4015–E4024, 10.1073/pnas.1608795113.
Jakob, C.A., Burda, P., Roth, J., Aebi, M., Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J. Cell Biol. 142 (1998), 1223–1233.
Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P., Jakob, C.A., Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell 19 (2005), 765–775, 10.1016/j.molcel.2005.08.015.
Kim, W., Spear, E.D., Ng, D.T.W., Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol. Cell 19 (2005), 753–764, 10.1016/j.molcel.2005.08.010.
Xie, W., Kanehara, K., Sayeed, A., Ng, D.T.W., Intrinsic conformational determinants signal protein misfolding to the Hrd1/Htm1 endoplasmic reticulum-associated degradation system. Mol. Biol. Cell 20 (2009), 3317–3329, 10.1091/mbc.E09-03-0231.
Schoebel, S., Mi, W., Stein, A., Ovchinnikov, S., Pavlovicz, R., DiMaio, F., Baker, D., Chambers, M.G., Su, H., Li, D., et al. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548 (2017), 352–355, 10.1038/nature23314.
Ye, Y., Meyer, H.H., Rapoport, T.A., The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414 (2001), 652–656, 10.1038/414652a.
Ye, Y., Meyer, H.H., Rapoport, T.A., Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol. 162 (2003), 71–84, 10.1083/jcb.200302169.
Ye, Y., Shibata, Y., Yun, C., Ron, D., Rapoport, T.A., A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429 (2004), 841–847, 10.1038/nature02656.
Yoshida, Y., Adachi, E., Fukiya, K., Iwai, K., Tanaka, K., Glycoprotein-specific ubiquitin ligases recognize N-glycans in unfolded substrates. EMBO Rep. 6 (2005), 239–244, 10.1038/sj.embor.7400351.
Yoshida, Y., Chiba, T., Tokunaga, F., Kawasaki, H., Iwai, K., Suzuki, T., Ito, Y., Matsuoka, K., Yoshida, M., Tanaka, K., Tai, T., E3 ubiquitin ligase that recognizes sugar chains. Nature 418 (2002), 438–442, 10.1038/nature00890.
Yoshida, Y., Tokunaga, F., Chiba, T., Iwai, K., Tanaka, K., Tai, T., Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J. Biol. Chem. 278 (2003), 43877–43884, 10.1074/jbc.M304157200.
Mizushima, T., Hirao, T., Yoshida, Y., Lee, S.J., Chiba, T., Iwai, K., Yamaguchi, Y., Kato, K., Tsukihara, T., Tanaka, K., Structural basis of sugar-recognizing ubiquitin ligase. Nat. Struct. Mol. Biol. 11 (2004), 365–370, 10.1038/nsmb732.
Mizushima, T., Yoshida, Y., Kumanomidou, T., Hasegawa, Y., Suzuki, A., Yamane, T., Tanaka, K., Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase. Proc. Natl. Acad. Sci. USA 104 (2007), 5777–5781, 10.1073/pnas.0610312104.
Gibson, B.A., Kraus, W.L., New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13 (2012), 411–424, 10.1038/nrm3376.
Liu, C., Vyas, A., Kassab, M.A., Singh, A.K., Yu, X., The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res. 45 (2017), 8129–8141, 10.1093/nar/gkx565.
Aravind, L., The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem. Sci. 26 (2001), 273–275.
Karras, G.I., Kustatscher, G., Buhecha, H.R., Allen, M.D., Pugieux, C., Sait, F., Bycroft, M., Ladurner, A.G., The macro domain is an ADP-ribose binding module. EMBO J. 24 (2005), 1911–1920, 10.1038/sj.emboj.7600664.
Wang, Z., Michaud, G.A., Cheng, Z., Zhang, Y., Hinds, T.R., Fan, E., Cong, F., Xu, W., Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev. 26 (2012), 235–240, 10.1101/gad.182618.111.
Kang, H.C., Lee, Y.I., Shin, J.H., Andrabi, S.A., Chi, Z., Gagné, J.P., Lee, Y., Ko, H.S., Lee, B.D., Poirier, G.G., et al. Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc. Natl. Acad. Sci. USA 108 (2011), 14103–14108, 10.1073/pnas.1108799108.
Yan, Q., Xu, R., Zhu, L., Cheng, X., Wang, Z., Manis, J., Shipp, M.A., BAL1 and its partner E3 ligase, BBAP, link Poly(ADP-ribose) activation, ubiquitylation, and double-strand DNA repair independent of ATM, MDC1, and RNF8. Mol. Cell Biol. 33 (2013), 845–857, 10.1128/MCB.00990-12.
Li, M., Yu, X., Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23 (2013), 693–704, 10.1016/j.ccr.2013.03.025.
Huang, S.M.A., Mishina, Y.M., Liu, S., Cheung, A., Stegmeier, F., Michaud, G.A., Charlat, O., Wiellette, E., Zhang, Y., Wiessner, S., et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461 (2009), 614–620, 10.1038/nature08356.
DaRosa, P.A., Wang, Z., Jiang, X., Pruneda, J.N., Cong, F., Klevit, R.E., Xu, W., Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 517 (2015), 223–226, 10.1038/nature13826.
Logan, C.Y., Nusse, R., The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20 (2004), 781–810, 10.1146/annurev.cellbio.20.010403.113126.
Lee, E., Salic, A., Krüger, R., Heinrich, R., Kirschner, M.W., The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol., 1, 2003, E10, 10.1371/journal.pbio.0000010.
Zhang, Y., Liu, S., Mickanin, C., Feng, Y., Charlat, O., Michaud, G.A., Schirle, M., Shi, X., Hild, M., Bauer, A., et al. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat. Cell Biol. 13 (2011), 623–629, 10.1038/ncb2222.
Hon, W.C., Wilson, M.I., Harlos, K., Claridge, T.D.W., Schofield, C.J., Pugh, C.W., Maxwell, P.H., Ratcliffe, P.J., Stuart, D.I., Jones, E.Y., Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417 (2002), 975–978, 10.1038/nature00767.
Min, J.H., Yang, H., Ivan, M., Gertler, F., Kaelin, W.G. Jr., Pavletich, N.P., Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science 296 (2002), 1886–1889, 10.1126/science.1073440.
Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., von Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292 (2001), 468–472, 10.1126/science.1059796.
Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107 (2001), 43–54.
Bruick, R.K., McKnight, S.L., A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294 (2001), 1337–1340, 10.1126/science.1066373.
Baek, J.H., Mahon, P.C., Oh, J., Kelly, B., Krishnamachary, B., Pearson, M., Chan, D.A., Giaccia, A.J., Semenza, G.L., OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha. Mol. Cell 17 (2005), 503–512, 10.1016/j.molcel.2005.01.011.
Cheng, J., Kang, X., Zhang, S., Yeh, E.T.H., SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131 (2007), 584–595, 10.1016/j.cell.2007.08.045.
Seo, K.S., Park, J.H., Heo, J.Y., Jing, K., Han, J., Min, K.N., Kim, C., Koh, G.Y., Lim, K., Kang, G.Y., et al. SIRT2 regulates tumour hypoxia response by promoting HIF-1alpha hydroxylation. Oncogene 34 (2015), 1354–1362, 10.1038/onc.2014.76.
Zheng, X., Zhai, B., Koivunen, P., Shin, S.J., Lu, G., Liu, J., Geisen, C., Chakraborty, A.A., Moslehi, J.J., Smalley, D.M., et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev. 28 (2014), 1429–1444, 10.1101/gad.242131.114.
Zhou, T., Erber, L., Liu, B., Gao, Y., Ruan, H.B., Chen, Y., Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells. Oncotarget 7 (2016), 79154–79169, 10.18632/oncotarget.12632.
Liou, Y.C., Zhou, X.Z., Lu, K.P., Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem. Sci. 36 (2011), 501–514, 10.1016/j.tibs.2011.07.001.
Zhou, X.Z., Lu, K.P., The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. Nat. Rev. Cancer 16 (2016), 463–478, 10.1038/nrc.2016.49.
Steger, M., Murina, O., Hühn, D., Ferretti, L.P., Walser, R., Hänggi, K., Lafranchi, L., Neugebauer, C., Paliwal, S., Janscak, P., et al. Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection. Mol. Cell 50 (2013), 333–343, 10.1016/j.molcel.2013.03.023.
Wang, J., Chan, B., Tong, M., Paung, Y., Jo, U., Martin, D., Seeliger, M., Haley, J., Kim, H., Prolyl isomerization of FAAP20 catalyzed by PIN1 regulates the Fanconi anemia pathway. PLoS Genet., 15, 2019, e1007983, 10.1371/journal.pgen.1007983.
Soffer, R.L., Enzymatic modification of proteins. 4. Arginylation of bovine thyroglobulin. J. Biol. Chem. 246 (1971), 1481–1484.
Mayer, A., Siegel, N.R., Schwartz, A.L., Ciechanover, A., Degradation of proteins with acetylated amino termini by the ubiquitin system. Science 244 (1989), 1480–1483, 10.1126/science.2544030.
Hwang, C.S., Shemorry, A., Varshavsky, A., N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327 (2010), 973–977, 10.1126/science.1183147.
Sriram, S.M., Kim, B.Y., Kwon, Y.T., The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12 (2011), 735–747, 10.1038/nrm3217.
Tasaki, T., Sriram, S.M., Park, K.S., Kwon, Y.T., The N-end rule pathway. Annu. Rev. Biochem. 81 (2012), 261–289, 10.1146/annurev-biochem-051710-093308.
Nguyen, K.T., Mun, S.H., Lee, C.S., Hwang, C.S., Control of protein degradation by N-terminal acetylation and the N-end rule pathway. Exp. Mol. Med. 50 (2018), 1–8, 10.1038/s12276-018-0097-y.
Chen, S.J., Wu, X., Wadas, B., Oh, J.H., Varshavsky, A., An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science, 355, 2017, eaal3655, 10.1126/science.aal3655.
Kim, J.M., Seok, O.H., Ju, S., Heo, J.E., Yeom, J., Kim, D.S., Yoo, J.Y., Varshavsky, A., Lee, C., Hwang, C.S., Formyl-methionine as an N-degron of a eukaryotic N-end rule pathway. Science, 362, 2018, eaat0174, 10.1126/science.aat0174.
Timms, R.T., Zhang, Z., Rhee, D.Y., Harper, J.W., Koren, I., Elledge, S.J., A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation. Science, 365, 2019, eaaw4912, 10.1126/science.aaw4912.
Tasaki, T., Zakrzewska, A., Dudgeon, D.D., Jiang, Y., Lazo, J.S., Kwon, Y.T., The substrate recognition domains of the N-end rule pathway. J. Biol. Chem. 284 (2009), 1884–1895, 10.1074/jbc.M803641200.
Román-Hernández, G., Grant, R.A., Sauer, R.T., Baker, T.A., Molecular basis of substrate selection by the N-end rule adaptor protein ClpS. Proc. Natl. Acad. Sci. USA 106 (2009), 8888–8893, 10.1073/pnas.0903614106.
Hu, R.G., Brower, C.S., Wang, H., Davydov, I.V., Sheng, J., Zhou, J., Kwon, Y.T., Varshavsky, A., Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms. J. Biol. Chem. 281 (2006), 32559–32573, 10.1074/jbc.M604355200.
Wang, J., Han, X., Saha, S., Xu, T., Rai, R., Zhang, F., Wolf, Y.I., Wolfson, A., Yates, J.R. 3rd, Kashina, A., Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo. Chem. Biol. 18 (2011), 121–130, 10.1016/j.chembiol.2010.10.016.
Yoo, Y.D., Mun, S.R., Ji, C.H., Sung, K.W., Kang, K.Y., Heo, A.J., Lee, S.H., An, J.Y., Hwang, J., Xie, X.Q., et al. N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis. Proc. Natl. Acad. Sci. USA 115 (2018), E2716–E2724, 10.1073/pnas.1719110115.
Cha-Molstad, H., Yu, J.E., Feng, Z., Lee, S.H., Kim, J.G., Yang, P., Han, B., Sung, K.W., Yoo, Y.D., Hwang, J., et al. p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat. Commun., 8, 2017, 102, 10.1038/s41467-017-00085-7.
Cha-Molstad, H., Sung, K.S., Hwang, J., Kim, K.A., Yu, J.E., Yoo, Y.D., Jang, J.M., Han, D.H., Molstad, M., Kim, J.G., et al. Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17 (2015), 917–929, 10.1038/ncb3177.
Kwon, D.H., Park, O.H., Kim, L., Jung, Y.O., Park, Y., Jeong, H., Hyun, J., Kim, Y.K., Song, H.K., Insights into degradation mechanism of N-end rule substrates by p62/SQSTM1 autophagy adapter. Nat. Commun., 9, 2018, 3291, 10.1038/s41467-018-05825-x.
Zhang, Y., Mun, S.R., Linares, J.F., Ahn, J., Towers, C.G., Ji, C.H., Fitzwalter, B.E., Holden, M.R., Mi, W., Shi, X., et al. ZZ-dependent regulation of p62/SQSTM1 in autophagy. Nat. Commun., 9, 2018, 4373, 10.1038/s41467-018-06878-8.
Aksnes, H., Hole, K., Arnesen, T., Molecular, cellular, and physiological significance of N-terminal acetylation. Int. Rev. Cell Mol. Biol. 316 (2015), 267–305, 10.1016/bs.ircmb.2015.01.001.
Aksnes, H., Drazic, A., Marie, M., Arnesen, T., First things first: vital protein marks by N-terminal acetyltransferases. Trends Biochem. Sci. 41 (2016), 746–760, 10.1016/j.tibs.2016.07.005.
Shemorry, A., Hwang, C.S., Varshavsky, A., Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50 (2013), 540–551, 10.1016/j.molcel.2013.03.018.
Park, S.E., Kim, J.M., Seok, O.H., Cho, H., Wadas, B., Kim, S.Y., Varshavsky, A., Hwang, C.S., Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 347 (2015), 1249–1252, 10.1126/science.aaa3844.
Kats, I., Khmelinskii, A., Kschonsak, M., Huber, F., Knieß, R.A., Bartosik, A., Knop, M., Mapping degradation signals and pathways in a eukaryotic N-terminome. Mol. Cell 70 (2018), 488–501.e5, 10.1016/j.molcel.2018.03.033.
Koren, I., Timms, R.T., Kula, T., Xu, Q., Li, M.Z., Elledge, S.J., The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell 173 (2018), 1622–1635.e14, 10.1016/j.cell.2018.04.028.
Mnatsakanyan, R., Markoutsa, S., Walbrunn, K., Roos, A., Verhelst, S.H.L., Zahedi, R.P., Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Nat. Commun., 10, 2019, 2195, 10.1038/s41467-019-10182-4.
Seth, D., Hess, D.T., Hausladen, A., Wang, L., Wang, Y.J., Stamler, J.S., A multiplex enzymatic machinery for cellular protein S-nitrosylation. Mol. Cell 69 (2018), 451–464.e6, 10.1016/j.molcel.2017.12.025.
Iglesias, M.J., Terrile, M.C., Correa-Aragunde, N., Colman, S.L., Izquierdo-Álvarez, A., Fiol, D.F., París, R., Sánchez-López, N., Marina, A., Calderón Villalobos, L.I.A., et al. Regulation of SCF(TIR1/AFBs) E3 ligase assembly by S-nitrosylation of Arabidopsis SKP1-like1 impacts on auxin signaling. Redox Biol. 18 (2018), 200–210, 10.1016/j.redox.2018.07.003.
Kumar, R., Jangir, D.K., Verma, G., Shekhar, S., Hanpude, P., Kumar, S., Kumari, R., Singh, N., Sarovar Bhavesh, N., Ranjan Jana, N., Kanti Maiti, T., S-nitrosylation of UCHL1 induces its structural instability and promotes alpha-synuclein aggregation. Sci. Rep., 7, 2017, 44558, 10.1038/srep44558.
Amal, H., Gong, G., Gjoneska, E., Lewis, S.M., Wishnok, J.S., Tsai, L.H., Tannenbaum, S.R., S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl. Psychiatry, 9, 2019, 44, 10.1038/s41398-019-0388-7.
Kim, S., Wing, S.S., Ponka, P., S-nitrosylation of IRP2 regulates its stability via the ubiquitin-proteasome pathway. Mol. Cell Biol. 24 (2004), 330–337.
Gupta, A., Anjomani-Virmouni, S., Koundouros, N., Dimitriadi, M., Choo-Wing, R., Valle, A., Zheng, Y., Chiu, Y.H., Agnihotri, S., Zadeh, G., et al. PARK2 depletion connects energy and oxidative stress to PI3K/Akt activation via PTEN S-nitrosylation. Mol. Cell 65 (2017), 999–1013.e7, 10.1016/j.molcel.2017.02.019.
Azad, N., Vallyathan, V., Wang, L., Tantishaiyakul, V., Stehlik, C., Leonard, S.S., Rojanasakul, Y., S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J. Biol. Chem. 281 (2006), 34124–34134, 10.1074/jbc.M602551200.
Chanvorachote, P., Nimmannit, U., Stehlik, C., Wang, L., Jiang, B.H., Ongpipatanakul, B., Rojanasakul, Y., Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res. 66 (2006), 6353–6360, 10.1158/0008-5472.CAN-05-4533.
Zhao, Y., Jensen, O.N., Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 9 (2009), 4632–4641, 10.1002/pmic.200900398.
Dunphy, K., Dowling, P., Bazou, D., O'Gorman, P., Current methods of post-translational modification analysis and their applications in blood cancers. Cancers, 13, 2021, 1930, 10.3390/cancers13081930.
Egelhofer, T.A., Minoda, A., Klugman, S., Lee, K., Kolasinska-Zwierz, P., Alekseyenko, A.A., Cheung, M.S., Day, D.S., Gadel, S., Gorchakov, A.A., et al. An assessment of histone-modification antibody quality. Nat. Struct. Mol. Biol. 18 (2011), 91–93, 10.1038/nsmb.1972.
Rothbart, S.B., Dickson, B.M., Raab, J.R., Grzybowski, A.T., Krajewski, K., Guo, A.H., Shanle, E.K., Josefowicz, S.Z., Fuchs, S.M., Allis, C.D., et al. An interactive database for the assessment of histone antibody specificity. Mol. Cell 59 (2015), 502–511, 10.1016/j.molcel.2015.06.022.
Witze, E.S., Old, W.M., Resing, K.A., Ahn, N.G., Mapping protein post-translational modifications with mass spectrometry. Nat. Methods 4 (2007), 798–806, 10.1038/nmeth1100.