[en] USP16 (also known as UBP-M) has emerged as a histone H2AK119 deubiquitylase (DUB) implicated in the regulation of chromatin-associated processes and cell cycle progression. Despite this, available evidence suggests that this DUB is also present in the cytoplasm. How the nucleo-cytoplasmic transport of USP16, and hence its function, is regulated has remained elusive. Here, we show that USP16 is predominantly cytoplasmic in all cell cycle phases. We identified the nuclear export signal (NES) responsible for maintaining USP16 in the cytoplasm. We found that USP16 is only transiently retained in the nucleus following mitosis and then rapidly exported from this compartment. We also defined a non-canonical nuclear localization signal (NLS) sequence that plays a minimal role in directing USP16 into the nucleus. We further established that this DUB does not accumulate in the nucleus following DNA damage. Instead, only enforced nuclear localization of USP16 abolishes DNA double-strand break (DSB) repair, possibly due to unrestrained DUB activity. Thus, in contrast to the prevailing view, our data indicate that USP16 is actively excluded from the nucleus and that this DUB might indirectly regulate DSB repair.This article has an associated First Person interview with the first author of the paper.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Sen Nkwe, Nadine ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Daou, Salima ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
Uriarte, Maxime ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Gagnon, Jessica ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3T 1J4, Canada
Iannantuono, Nicholas Victor ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3T 1J4, Canada
Barbour, Haithem ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Yu, Helen ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
Masclef, Louis ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Fernández, Erlinda ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Zamorano Cuervo, Natalia ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; CRCHUM-Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, QC H2X 0A9, Canada
Mashtalir, Nazar ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
Binan, Loïc ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Department of Ophthalmology, University of Montréal, Montréal, Québec, Canada
Sergeev, Mikhail ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Bélanger, François ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada
Drobetsky, Elliot ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
Milot, Eric ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
Wurtele, Hugo ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
Costantino, Santiago ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada ; Department of Ophthalmology, University of Montréal, Montréal, Québec, Canada
Affar, El Bachir ; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada el.bachir.affar@umontreal.ca ; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
NSERC - Natural Sciences and Engineering Research Council FRQS - Fonds de Recherche du Québec - Santé FRQNT - Fonds de Recherche du Québec - Nature et Technologies
Funding text :
This work was supported by a discovery grant (2015-2021) to E.B.A. from The Natural Sciences and Engineering Research Council of Canada (NSERC), a discovery grant (2013-2019) to H.W. from NSERC, a discovery grant (2018-2023) to E.M. from NSERC and a discovery grant (2016-2021) to S.C. from NSERC. H.W., S.C. and E.B.A. are Scholars of Fonds de la Recherche du Québec en Santé (FRQ-S). J.G. was supported by a Master’s scholarship from the FRQ-S. N.S.N. was supported by a PhD scholarship from the FRQ-S. N.M. was supported by a PhD scholarship from Fonds de Recherche du Québec-Nature et Technologies (FRQ-NT). H.Y. was supported by a PhD scholarship from the CIHR.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adorno, M., Sikandar, S., Mitra, S. S., Kuo, A., Nicolis Di Robilant, B., Haro-Acosta, V., Ouadah, Y., Quarta, M., Rodriguez, J., Qian, D. et al. (2013). Usp16 contributes to somatic stem-cell defects in Down's syndrome. Nature 501, 380-384. doi:10.1038/nature12530
Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E. et al. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 40, W597-W603. doi:10.1093/nar/gks400
Binan, L., Mazzaferri, J., Choquet, K., Lorenzo, L.-E., Wang, Y.C.., Affar, E.B., De Koninck, Y., Ragoussis, J., Kleinman, C.L. and Costantinos, S. (2016). Live single-cell laser tag. Nat. Commun. 7, 11636. doi:10.1038/ncomms11636
Bonacci, T., Suzuki, A., Grant, G. D., Stanley, N., Cook, J. G., Brown, N. G. and Emanuele, M. J. (2018). Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. EMBO J. 37, e98701. doi:10.15252/embj.201798701
Bond, C. S. and Schuttelkopf, A. W. (2009). ALINE: a WYSIWYG proteinsequence alignment editor for publication-quality alignments. Acta Crystallogr. D Biol. Crystallogr. 65, 510-512. doi:10.1107/S0907444909007835
Borodovsky, A., Kessler, B. M., Casagrande, R., Overkleeft, H. S., Wilkinson, K. D. and Ploegh, H. L. (2001). A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 20, 5187-5196. doi:10.1093/emboj/20.18.5187
Borodovsky, A., Ovaa, H., Kolli, N., Gan-Erdene, T., Wilkinson, K. D., Ploegh, H. L. and Kessler, B. M. (2002). Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149-1159. doi:10.1016/S1074-5521(02)00248-X
Cai, S.-Y., Babbitt, R. W. and Marchesi, V. T. (1999). A mutant deubiquitinating enzyme (Ubp-M) associates with mitotic chromosomes and blocks cell division. Proc. Natl. Acad. Sci. USA 96, 2828-2833. doi:10.1073/pnas.96.6.2828
Clague, M. J., Heride, C. and Urbé, S. (2015). The demographics of the ubiquitin system. Trends Cell Biol. 25, 417-426. doi:10.1016/j.tcb.2015.03.002
Clague, M. J., Urbé, S. and Komander, D. (2019). Breaking the chains: deubiquitylating enzyme specificity begets function. Nat. Rev. Mol. Cell Biol. 20, 338-352. doi:10.1038/s41580-019-0099-1
Cressman, D. E., O'Connor, W. J., Greer, S. F., Zhu, X.-S. and Ting, J. P. (2001). Mechanisms of nuclear import and export that control the subcellular localization of class II transactivator. J. Immunol. 167, 3626-3634. doi:10.4049/jimmunol.167. 7.3626
Daou, S., Mashtalir, N., Hammond-Martel, I., Pak, H., Yu, H., Sui, G., Vogel, J. L., Kristie, T. M. and Affar, E. B. (2011). Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc. Natl. Acad. Sci. USA 108, 2747-2752. doi:10.1073/pnas.1013822108
Daou, S., Hammond-Martel, I., Mashtalir, N., Barbour, H., Gagnon, J., Iannantuono, N. V. G., Nkwe, N. S., Motorina, A., Pak, H., Yu, H. et al. (2015). The BAP1/ASXL2 histone H2A deubiquitinase complex regulates cell proliferation and is disrupted in cancer. J. Biol. Chem. 290, 28643-28663. doi:10. 1074/jbc.M115.661553
Daou, S., Barbour, H., Ahmed, O., Masclef, L., Baril, C., Sen Nkwe, N., Tchelougou, D., Uriarte, M., Bonneil, E., Ceccarelli, D. et al. (2018). Monoubiquitination of ASXLs controls the deubiquitinase activity of the tumor suppressor BAP1. Nat. Commun. 9, 4385. doi:10.1038/s41467-018-06854-2
Eletr, Z. M. and Wilkinson, K. D. (2014). Regulation of proteolysis by human deubiquitinating enzymes. Biochim. Biophys. Acta 1843, 114-128. doi:10.1016/j. bbamcr.2013.06.027
Emsley, P., Lohkamp, B., Scott, W. G. and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501. doi:10. 1107/S0907444910007493
Esmaili, A. M., Johnson, E. L., Thaivalappil, S. S., Kuhn, H. M., Kornbluth, S. and Irusta, P. M. (2010). Regulation of the ATM-activator protein Aven by CRM1-dependent nuclear export. Cell Cycle 9, 3913-3920. doi:10.4161/cc.9.19.13138
Fraile, J. M., Quesada, V., Rodríguez, D., Freije, J. M. and Lopez-Otin, C. (2012). Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31, 2373-2388. doi:10.1038/onc.2011.443
Frangini, A., Sjöberg, M., Roman-Trufero, M., Dharmalingam, G., Haberle, V., Bartke, T., Lenhard, B., Malumbres, M., Vidal, M. and Dillon, N. (2013). The aurora B kinase and the polycomb protein ring1B combine to regulate active promoters in quiescent lymphocytes. Mol. Cell 51, 647-661. doi:10.1016/j.molcel. 2013.08.022
Fu, S. C., Imai, K. and Horton, P. (2011). Prediction of leucine-rich nuclear export signal containing proteins with NESsential. Nucleic Acids Res. 39, e111. doi:10. 1093/nar/gkr493
Fung, H. Y., Fu, S. C. and Chook, Y. M. (2017). Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals. Elife 6, e23961. doi:10.7554/eLife.23961.046
Garcia-Santisteban, I., Bañuelos, S. and Rodríguez, J. A. (2012). A global survey of CRM1-dependent nuclear export sequences in the human deubiquitinase family. Biochem. J. 441, 209-217. doi:10.1042/BJ20111300
Gelsi-Boyer, V., Trouplin, V., Adelaide, J., Aceto, N., Remy, V., Pinson, S., Houdayer, C., Arnoulet, C., Sainty, D., Bentires-Alj, M. et al. (2008). Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes. BMC Cancer 8, 299. doi:10.1186/1471-2407-8-299
Gomez-Diaz, C. and Ikeda, F. (2018). Roles of ubiquitin in autophagy and cell death. Semin. Cell Dev. Biol. 93, 125-135. doi:10.1016/j.semcdb.2018.09.004
Grumati, P. and Dikic, I. (2018). Ubiquitin signaling and autophagy. J. Biol. Chem. 293, 5404-5413. doi:10.1074/jbc.TM117.000117
Gu, Y., Jones, A. E., Yang, W., Liu, S., Dai, Q., Liu, Y., Swindle, C. S., Zhou, D., Zhang, Z., Ryan, T. M. et al. (2016). The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function. Proc. Natl. Acad. Sci. USA 113, E51-E60. doi:10.1073/pnas.1517041113
Hammond-Martel, I., Pak, H., Yu, H., Rouget, R., Horwitz, A. A., Parvin, J. D., Drobetsky, E. A. and Affar, E. B. (2010). PI 3 kinase related kinasesindependent proteolysis of BRCA1 regulates Rad51 recruitment during genotoxic stress in human cells. PLoS ONE 5, e14027. doi:10.1371/journal. pone.0014027
Hammond-Martel, I., Yu, H. and Affar, E. B. (2012). Roles of ubiquitin signaling in transcription regulation. Cell. Signal. 24, 410-421. doi:10.1016/j.cellsig.2011.10.009
Harper, J.W., Ordureau, A. and Heo, J.-M. (2018). Building and decoding ubiquitin chains formitophagy. Nat. Rev. Mol. Cell Biol. 19, 93-108.doi:10.1038/nrm.2017.129
Heaton, S. M., Borg, N. A. and Dixit, V. M. (2016). Ubiquitin in the activation and attenuation of innate antiviral immunity. J. Exp. Med. 213, 1-13. doi:10.1084/jem. 20151531
Hu, H. and Sun, S.-C. (2016). Ubiquitin signaling in immune responses. Cell Res. 26, 457-483. doi:10.1038/cr.2016.40
Jackson, S. P. and Durocher, D. (2013). Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 49, 795-807. doi:10.1016/j.molcel.2013.01.017
Joo, H.-Y., Zhai, L., Yang, C., Nie, S., Erdjument-Bromage, H., Tempst, P., Chang, C. and Wang, H. (2007). Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449, 1068-1072. doi:10.1038/nature06256
Julien, C., Coulombe, P. and Meloche, S. (2003). Nuclear export of ERK3 by a CRM1-dependent mechanism regulates its inhibitory action on cell cycle progression. J. Biol. Chem. 278, 42615-42624. doi:10.1074/jbc.M302724200
Komander, D., Clague, M. J. and Urbé, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550-563. doi:10. 1038/nrm2731
Kosugi, S., Hasebe, M., Matsumura, N., Takashima, H., Miyamoto-Sato, E., Tomita, M. and Yanagawa, H. (2009). Six classes of nuclear localization signals specific to different binding grooves of importin α. J. Biol. Chem. 284, 478-485. doi:10.1074/jbc.M807017200
la Cour, T., Kiemer, L., Molgaard, A., Gupta, R., Skriver, K. and Brunak, S. (2004). Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel. 17, 527-536. doi:10.1093/protein/gzh062
Lange, A., Mills, R. E., Lange, C. J., Stewart, M., Devine, S. E. and Corbett, A. H. (2007). Classical nuclear localization signals: definition, function, and interaction with importin alpha. J. Biol. Chem. 282, 5101-5105. doi:10.1074/jbc.R600026200
Liu, J. and DeFranco, D. B. (2000). Protracted nuclear export of glucocorticoid receptor limits its turnover and does not require the exportin 1/CRM1-directed nuclear export pathway. Mol. Endocrinol. 14, 40-51. doi:10.1210/mend.14.1.0398
Mashtalir, N., Daou, S., Barbour, H., Sen, N. N., Gagnon, J., Hammond-Martel, I., Dar, H. H., Therrien, M. and Affar, E. B. (2014). Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol. Cell 54, 392-406. doi:10.1016/j.molcel.2014.03.002
Mendler, L., Braun, T. and Müller, S. (2016). The ubiquitin-like SUMO system and heart function: from development to disease. Circ. Res. 118, 132-144. doi:10. 1161/CIRCRESAHA.115.307730
Mevissen, T. E. T. and Komander, D. (2017). Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159-192. doi:10.1146/annurev-biochem-061516-044916
Mimnaugh, E. G., Kayastha, G., McGovern, N. B., Hwang, S.-G., Marcu, M. G., Trepel, J., Cai, S.-Y., Marchesi, V. T. and Neckers, L. (2001). Caspasedependent deubiquitination of monoubiquitinated nucleosomal histone H2A induced by diverse apoptogenic stimuli. Cell Death Differ. 8, 1182-1196. doi:10. 1038/sj.cdd.4400924
Murai, N., Murakami, Y. and Matsufuji, S. (2003). Identification of nuclear export signals in antizyme-1. J. Biol. Chem. 278, 44791-44798. doi:10.1074/jbc. M308059200
Nguyen Ba, A. N., Pogoutse, A., Provart, N. and Moses, A. M. (2009). NLStradamus: a simple hidden markov model for nuclear localization signal prediction. BMC Bioinformatics 10, 202. doi:10.1186/1471-2105-10-202
Nijman, S. M. B., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K. and Bernards, R. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786. doi:10.1016/j.cell.2005.11.007
Nishi, R., Wijnhoven, P., le Sage, C., Tjeertes, J., Galanty, Y., Forment, J. V., Clague, M. J., Urbé, S. and Jackson, S. P. (2014). Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nat. Cell Biol. 16, 1016-1026. doi:10.1038/ncb3028
Panier, S. and Boulton, S. J. (2014). Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 15, 7-18. doi:10.1038/nrm3719
Perrody, E., Abrami, L., Feldman, M., Kunz, B., Urbé, S. and van der Goot, F. G. (2016). Ubiquitin-dependent folding of the Wnt signaling coreceptor LRP6. Elife 5, e19083. doi:10.7554/eLife.19083.018
Popovic, D., Vucic, D. and Dikic, I. (2014). Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20, 1242-1253. doi:10.1038/nm.3739
Reyes-Turcu, F. E., Horton, J. R., Mullally, J. E., Heroux, A., Cheng, X. and Wilkinson, K. D. (2006). The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124, 1197-1208. doi:10. 1016/j.cell.2006.02.038
Reyes-Turcu, F. E., Ventii, K. H. and Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363-397. doi:10.1146/annurev.biochem.78.082307.091526
Rodier, G., Montagnoli, A., Di Marcotullio, L., Coulombe, P., Draetta, G. F., Pagano, M. and Meloche, S. (2001). p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J. 20, 6672-6682. doi:10.1093/emboj/20.23.6672
Rubinsztein, D. C. (2006). The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780-786. doi:10.1038/nature05291
Sahtoe, D. D. and Sixma, T. K. (2015). Layers of DUB regulation. Trends Biochem. Sci. 40, 456-467. doi:10.1016/j.tibs.2015.05.002
Schneider, C. A., Rasband, W. S. and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675. doi:10.1038/nmeth.2089
Schwertman, P., Bekker-Jensen, S. and Mailand, N. (2016). Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat. Rev. Mol. Cell Biol. 17, 379-394. doi:10.1038/nrm.2016.58
Senft, D., Qi, J. and Ronai, Z. A. (2018). Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer 18, 69-88. doi:10.1038/nrc.2017.105
Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. and Greenberg, R. A. (2010). ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970-981. doi:10. 1016/j.cell.2010.04.038
Soniat, M. and Chook, Y. M. (2015). Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochem. J. 468, 353-362. doi:10.1042/BJ20150368
Tanaka, K. and Matsuda, N. (2014). Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochim. Biophys. Acta 1843, 197-204. doi:10.1016/j.bbamcr.2013.03.012
Uckelmann, M. and Sixma, T. K. (2017). Histone ubiquitination in the DNA damage response. DNA Repair 56, 92-101. doi:10.1016/j.dnarep.2017.06.011
Urbé, S., Liu, H., Hayes, S. D., Heride, C., Rigden, D. J. and Clague, M. J. (2012). Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome- and microtubule-associated functions. Mol. Biol. Cell 23, 1095-1103. doi:10.1091/mbc.e11-08-0668
Vassilev, L. T., Tovar, C., Chen, S., Knezevic, D., Zhao, X., Sun, H., Heimbrook, D. C. and Chen, L. (2006). Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc. Natl. Acad. Sci. USA 103, 10660-10665. doi:10.1073/pnas.0600447103
Vucic, D., Dixit, V. M. and Wertz, I. E. (2011). Ubiquitylation in apoptosis: a posttranslational modification at the edge of life and death. Nat. Rev. Mol. Cell Biol. 12, 439-452. doi:10.1038/nrm3143
Wang, Z., Zhang, H., Liu, J., Cheruiyot, A., Lee, J.-H., Ordog, T., Lou, Z., You, Z. and Zhang, Z. (2016). USP51 deubiquitylates H2AK13,15ub and regulates DNA damage response. Genes Dev. 30, 946-959. doi:10.1101/gad.271841.115
Werner, A., Manford, A. G. and Rape, M. (2017). Ubiquitin-dependent regulation of stem cell biology. Trends Cell Biol. 27, 568-579. doi:10.1016/j.tcb.2017.04.002
Wertz, I. E. and Dixit, V. M. (2010). Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ. 17, 14-24. doi:10.1038/cdd.2009.168
Xu, Y., Yang, H., Joo, H. Y., Yu, J. H., Smith, A. D. T., Schneider, D., Chow, L. T., Renfrow, M. and Wang, H. (2013). Ubp-M serine 552 phosphorylation by cyclindependent kinase 1 regulates cell cycle progression. Cell Cycle 12, 3219-3227. doi:10.4161/cc.26278
Yang, W., Lee, Y.-H., Jones, A. E., Woolnough, J. L., Zhou, D., Dai, Q., Wu, Q., Giles, K. E., Townes, T. M. and Wang, H. (2014). The histone H2A deubiquitinase Usp16 regulates embryonic stem cell gene expression and lineage commitment. Nat. Commun. 5, 3818. doi:10.1038/ncomms4818
Yau, R. and Rape, M. (2016). The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579-586. doi:10.1038/ncb3358
Zhang, Z., Yang, H. and Wang, H. (2014). The histone H2A deubiquitinase USP16 interacts with HERC2 and fine-tunes cellular response to DNA damage. J. Biol. Chem. 289, 32883-32894. doi:10.1074/jbc.M114.599605
Zheng, N. and Shabek, N. (2017). Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129-157. doi:10.1146/annurev-biochem-060815-014922
Zhuo, X., Guo, X., Zhang, X., Jing, G., Wang, Y., Chen, Q., Jiang, Q., Liu, J. and Zhang, C. (2015). Usp16 regulates kinetochore localization of Plk1 to promote proper chromosome alignment in mitosis. J. Cell Biol. 210, 727-735. doi:10.1083/jcb.201502044
Zimmermann, M. and de Lange, T. (2014). 53BP1: pro choice in DNA repair. Trends Cell Biol. 24, 108-117. doi:10.1016/j.tcb.2013.09.003
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.