Keywords :
Cell proliferation; DNA double-strand break repair; Deubiquitylase; H2AK119; Mitosis; Nuclear export; UBP-M; USP16; Ubiquitin; Nuclear Export Signals; Nuclear Localization Signals; Active Transport, Cell Nucleus; Cytoplasm/genetics; Cytoplasm/metabolism; Interphase; Nuclear Localization Signals/genetics; Nuclear Localization Signals/metabolism; Cell Nucleus/genetics; Cell Nucleus/metabolism; Nuclear Export Signals/genetics; Cell Nucleus; Cytoplasm; Cell Biology
Abstract :
[en] USP16 (also known as UBP-M) has emerged as a histone H2AK119 deubiquitylase (DUB) implicated in the regulation of chromatin-associated processes and cell cycle progression. Despite this, available evidence suggests that this DUB is also present in the cytoplasm. How the nucleo-cytoplasmic transport of USP16, and hence its function, is regulated has remained elusive. Here, we show that USP16 is predominantly cytoplasmic in all cell cycle phases. We identified the nuclear export signal (NES) responsible for maintaining USP16 in the cytoplasm. We found that USP16 is only transiently retained in the nucleus following mitosis and then rapidly exported from this compartment. We also defined a non-canonical nuclear localization signal (NLS) sequence that plays a minimal role in directing USP16 into the nucleus. We further established that this DUB does not accumulate in the nucleus following DNA damage. Instead, only enforced nuclear localization of USP16 abolishes DNA double-strand break (DSB) repair, possibly due to unrestrained DUB activity. Thus, in contrast to the prevailing view, our data indicate that USP16 is actively excluded from the nucleus and that this DUB might indirectly regulate DSB repair.This article has an associated First Person interview with the first author of the paper.
Funding text :
This work was supported by a discovery grant (2015-2021) to E.B.A. from The Natural Sciences and Engineering Research Council of Canada (NSERC), a discovery grant (2013-2019) to H.W. from NSERC, a discovery grant (2018-2023) to E.M. from NSERC and a discovery grant (2016-2021) to S.C. from NSERC. H.W., S.C. and E.B.A. are Scholars of Fonds de la Recherche du Québec en Santé (FRQ-S). J.G. was supported by a Master’s scholarship from the FRQ-S. N.S.N. was supported by a PhD scholarship from the FRQ-S. N.M. was supported by a PhD scholarship from Fonds de Recherche du Québec-Nature et Technologies (FRQ-NT). H.Y. was supported by a PhD scholarship from the CIHR.
Scopus citations®
without self-citations
13