geomagnetic storms; geomagnetically induced currents; omega bands; substorms; westward electrojet; Geophysics; Space and Planetary Science
Abstract :
[en] A necessary condition for the generation of Geomagnetically Induced Currents (GICs) that can pose hazards for technological infrastructure is the occurrence of large, rapid changes in the magnetic field at the surface of the Earth. We investigate the causes of such (Formula presented.) events or “spikes” observed by SuperMAG at auroral latitudes, by comparing with the time-series of different types of geomagnetic activity for the duration of 2010. Spikes are found to occur predominantly in the pre-midnight and dawn sectors. We find that pre-midnight spikes are associated with substorm onsets. Dawn sector spikes are not directly associated with substorms, but with auroral activity occurring within the westward electrojet region. Azimuthally-spaced auroral features drift sunwards, producing Ps6 (10–20 min period) magnetic perturbations on the ground. The magnitude of (Formula presented.) is determined by the flow speed in the convection return flow region, which in turn is related to the strength of solar wind-magnetospheric coupling. Pre-midnight and dawn sector spikes can occur at the same time, as strong coupling favors both substorms and westward electrojet activity; however, the mechanisms that create them seem somewhat independent. The dawn auroral features share some characteristics with omega bands, but can also appear as north-south aligned auroral streamers. We suggest that these two phenomena share a single underlying cause. The associated fluctuations in the westward electrojet produce quasi-periodic negative excursions in the AL index, which can be mis-identified as recurrent substorm intensifications.
Milan, S.E. ; School of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Bower, G.E. ; School of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Fleetham, A.L. ; School of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Imber, S.M. ; School of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Schillings, A.; School of Physics and Astronomy, University of Leicester, Leicester, United Kingdom ; Department of Physics, Umeå University, Umeå, Sweden
Opgenoorth, H.; School of Physics and Astronomy, University of Leicester, Leicester, United Kingdom ; Department of Physics, Umeå University, Umeå, Sweden
Gjerloev, J. ; Johns Hopkins University Applied Physics Laboratory, Laurel, United States
Paxton, L.J. ; Johns Hopkins University Applied Physics Laboratory, Laurel, United States
Vines, S.K. ; Southwest Research Institute, San Antonio, United States
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hairston, M.R. ; William B. Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, United States
Language :
English
Title :
Occurrence and Causes of Large dB/dt Events and AL Bays in the Pre-Midnight and Dawn Sectors
Akasofu, S.-I. (1964). The development of the auroral substorm. Planetary and Space Science, 12(4), 273–282. https://doi.org/10.1016/0032-0633(64)90151-5
Anderson, B., Takahashi, K., & Toth, B. (2000). Sensing global Birkeland currents with Iridium® engineering magnetometer data. Geophysical Research Letters, 27(24), 4045–4048. https://doi.org/10.1029/2000GL000094
Apatenkov, S., Pilipenko, V., Gordeev, E., Viljanen, A., Juusola, L., Belakhovsky, V., et al. (2020). Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophysical Research Letters, 47(6), e2019GL086677. https://doi.org/10.1029/2019GL086677
Chisham, G., Freeman, M., Abel, G., Lam, M., Pinnock, M., Coleman, I., et al. (2008). Remote sensing of the spatial and temporal structure of magnetopause and magnetotail reconnection from the ionosphere. Reviews of Geophysics, 46(1). https://doi.org/10.1029/2007RG000223
Cowley, S., & Lockwood, M. (1992). Excitation and decay of solar wind-driven flows in the magnetosphere-ionosphere system. Annales Geophysicae, 10, 103–115.
Davis, T. N., & Sugiura, M. (1966). Auroral electrojet activity index AE and its universal time variations. Journal of Geophysical Research, 71(3), 785–801. https://doi.org/10.1029/jz071i003p00785
Dungey, J. (1961). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6(2), 47–48. https://doi.org/10.1103/PhysRevLett.6.47
Engebretson, M., Kirkevold, K., Steinmetz, E., Pilipenko, V. A., Moldwin, M., McCuen, B., et al. (2020). Interhemispheric comparisons of large nighttime magnetic perturbation events relevant to GICs. Journal of Geophysical Research: Space Physics, 125(8), e2020JA028128. https://doi.org/10.1029/2020JA028128
Fleetham, A., Milan, S., Imber, S., Bower, G., Gjerloev, J., & Vines, S. (2024). The relationship between large dB/dt and field-aligned currents during five geomagnetic storms. Journal of Geophysical Research: Space Physics, 129(7), e2024JA032483. https://doi.org/10.1029/2024JA032483
Forsyth, C., Rae, I., Coxon, J., Freeman, M., Jackman, C., Gjerloev, J., & Fazakerley, A. (2015). A new technique for determining substorm onsets and phases from indices of the electrojet (SOPHIE). Journal of Geophysical Research: Space Physics, 120(12), 10–592. https://doi.org/10.1002/2015ja021343
Gjerloev, J. (2012). The SuperMAG data processing technique. Journal of Geophysical Research, 117(A9). https://doi.org/10.1029/2012JA017683
Gonzalez, W., Joselyn, J.-A., Kamide, Y., Kroehl, H., Rostoker, G., Tsurutani, B., & Vasyliunas, V. (1994). What is a geomagnetic storm? Journal of Geophysical Research, 99(A4), 5771–5792. https://doi.org/10.1029/93JA02867
Henderson, M. G. (2022). Association of mesoscale auroral structures and breakups with energetic particle injections at geosynchronous orbit. Frontiers in Astronomy and Space Sciences, 9, 742246. https://doi.org/10.3389/fspas.2022.742246
Hubert, B., Milan, S., Grocott, A., Blockx, C., Cowley, S., & Gérard, J.-C. (2006). Dayside and nightside reconnection rates inferred from IMAGE FUV and super dual auroral radar network data. Journal of Geophysical Research, 111(A3). https://doi.org/10.1029/2005JA011140
Iijima, T., & Potemra, T. (1976). The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. Journal of Geophysical Research, 81(13), 2165–2174. https://doi.org/10.1029/JA081i013p02165
Iyemori, T. (1990). Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations. Journal of Geomagnetism and Geoelectricity, 42(11), 1249–1265. https://doi.org/10.5636/jgg.42.1249
Juusola, L., Viljanen, A., Van De Kamp, M., Tanskanen, E., Vanhamäki, H., Partamies, N., & Kauristie, K. (2015). High-latitude ionospheric equivalent currents during strong space storms: Regional perspective. Space Weather, 13(1), 49–60. https://doi.org/10.1002/2014SW001139
Kataoka, R., & Pulkkinen, A. (2008). Geomagnetically induced currents during intense storms driven by coronal mass ejections and corotating interacting regions. Journal of Geophysical Research, 113(A3). https://doi.org/10.1029/2007JA012487
Mende, S., Heetderks, H., Frey, H., Lampton, M., Geller, S., Abiad, R., et al. (2000). Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging. Space Science Reviews, 91(1/2), 271–285. https://doi.org/10.1023/A:1005227915363
Milan, S. (2019). AMPERE R1/R2 FAC radii Dataset. Figshare. https://doi.org/10.25392/leicester.data.11294861.v1
Milan, S. (2020). Magnetospheric geonome project 2010 University of Leicester Dataset. https://doi.org/10.25392/leicester.data.12571307.v1
Milan, S., Carter, J., Korth, H., & Anderson, B. (2015). Principal component analysis of Birkeland currents determined by the active magnetosphere and planetary Electrodynamics Response experiment. Journal of Geophysical Research: Space Physics, 120(12), 10–415. https://doi.org/10.1002/2015JA021680
Milan, S., Carter, J., Sangha, H., Bower, G., & Anderson, B. (2021). Magnetospheric flux throughput in the Dungey cycle: Identification of convection state during 2010. Journal of Geophysical Research: Space Physics, 126(2), e2020JA028437. https://doi.org/10.1029/2020JA028437
Milan, S., Clausen, L., Coxon, J., Carter, J., Walach, M.-T., Laundal, K., et al. (2017). Overview of solar wind–magnetosphere–ionosphere–atmosphere coupling and the generation of magnetospheric currents. Space Science Reviews, 206(1–4), 547–573. https://doi.org/10.1007/s11214-017-0333-0
Milan, S., Gosling, J., & Hubert, B. (2012). Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap. Journal of Geophysical Research, 117(A3). https://doi.org/10.1029/2011JA017082
Milan, S., Imber, S., Fleetham, A., & Gjerloev, J. (2023a). Solar cycle and solar wind dependence of the occurrence of large dB/dt events at high latitudes. Journal of Geophysical Research: Space Physics, 128(4), e2022JA030953. https://doi.org/10.1029/2022JA030953
Milan, S., Mooney, M., Bower, G., Fleetham, A., Vines, S., & Gjerloev, J. (2023b). Solar wind-magnetosphere coupling during high-intensity long-duration continuous AE activity (HILDCAA). Journal of Geophysical Research: Space Physics, 128(11), e2023JA032027. https://doi.org/10.1029/2023JA032027
Milan, S., Provan, G., & Hubert, B. (2007). Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates. Journal of Geophysical Research, 112(A1). https://doi.org/10.1029/2006JA011642
Milan, S., Walach, M.-T., Carter, J., Sangha, H., & Anderson, B. (2019). Substorm onset latitude and the steadiness of magnetospheric convection. Journal of Geophysical Research: Space Physics, 124(3), 1738–1752. https://doi.org/10.1029/2018JA025969
Molinski, T., Feero, W., & Damsky, B. (2000). Shielding grids from solar storms. IEEE Spectrum, 37(11), 55–60. https://doi.org/10.1109/6.880955
Newell, P., & Gjerloev, J. (2011). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116(A12). https://doi.org/10.1029/2011ja016779
Ngwira, C. M., Sibeck, D., Silveira, M. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. (2018). A study of intense local dB/dt variations during two geomagnetic storms. Space Weather, 16(6), 676–693. https://doi.org/10.1029/2018SW001911
Papitashvili, N., & King, J. (2020). Omni 1-min dat [Dataset]. NASA Space Physics Data Facility. https://doi.org/10.48322/45bb-8792
Partamies, N., Weygand, J., & Juusola, L. (2017). Statistical study of auroral omega bands. Annales Geophysicae, 35(5), 1069–1083. https://doi.org/10.5194/angeo-35-1069-2017
Paxton, L., Meng, C.-I., Fountain, G., Ogorzalek, B., Darlington, E., Gary, S., et al. (1992). Special sensor ultraviolet spectrographic imager: An instrument description. In Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing (Vol. 1745, pp. 2–15). https://doi.org/10.1117/12.60595
Pulkkinen, A., & Kataoka, R. (2006). S-transform view of geomagnetically induced currents during geomagnetic superstorms. Geophysical Research Letters, 33(12). https://doi.org/10.1029/2006GL025822
Rajaram, G., Rostoker, G., & Samson, J. (1986). Wave characteristics of Ps 6 magnetic variations and their implications for convective flow in the magnetotail. Planetary and Space Science, 34(3), 319–329. https://doi.org/10.1016/0032-0633(86)90138-8
Rich, F., & Hairston, M. (1994). Large-scale convection patterns observed by DMSP. Journal of Geophysical Research, 99(A3), 3827–3844. https://doi.org/10.1029/93JA03296
Rostoker, G., Akasofu, S.-I., Foster, J., Greenwald, R., Kamide, Y., Kawasaki, K., et al. (1980). Magnetospheric substorms—Definition and signatures. Journal of Geophysical Research, 85(A4), 1663–1668. https://doi.org/10.1029/JA085iA04p01663
Rostoker, G., & Barichello, J. (1980). Seasonal and diurnal variation of Ps 6 magnetic disturbances. Journal of Geophysical Research, 85(A1), 161–163. https://doi.org/10.1029/JA085iA01p00161
Sato, N., Kadokura, A., Tanaka, Y., Nishiyama, T., Hori, T., & Yukimatu, A. S. (2015). Omega band pulsating auroras observed onboard themis spacecraft and on the ground. Journal of Geophysical Research: Space Physics, 120(7), 5524–5544. https://doi.org/10.1002/2015JA021382
Schillings, A., Palin, L., Opgenoorth, H., Hamrin, M., Rosenqvist, L., Gjerloev, J., et al. (2022). Distribution and occurrence frequency of dB/dt spikes during magnetic storms 1980-2020. Space Weather, 20(5), e2021SW002953. https://doi.org/10.1029/2021SW002953
Sergeev, V., Pellinen, R. J., & Pulkkinen, T. (1996). Steady magnetospheric convection: A review of recent results. Space Science Reviews, 75(3–4), 551–604. https://doi.org/10.1007/BF00833344
Sorathia, K., Michael, A., Merkin, V., Ohtani, S., Keesee, A., Sciola, A., et al. (2023). Multiscale magnetosphere-ionosphere coupling during stormtime: A case study of the dawnside current wedge. Journal of Geophysical Research: Space Physics, 128(11), e2023JA031594. https://doi.org/10.1029/2023JA031594
Troshichev, O., Janzhura, A., & Stauning, P. (2006). Unified PCN and PCS indices: Method of calculation, physical sense, and dependence on the IMF azimuthal and northward components. Journal of Geophysical Research, 111(A5). https://doi.org/10.1029/2005JA011402
Tsurutani, B., & Gonzalez, W. (1987). The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains. Planetary and Space Science, 35(4), 405–412. https://doi.org/10.1016/0032-0633(87)90097-3
Vanhamäki, H., Kauristie, K., Amm, O., Senior, A., Lummerzheim, D., & Milan, S. (2009). Electrodynamics of an omega-band as deduced from optical and magnetometer data. Annales Geophysicae, 27(9), 3367–3385. https://doi.org/10.5194/angeo-27-3367-2009
Viljanen, A., Nevanlinna, H., Pajunpää, K., & Pulkkinen, A. (2001). Time derivative of the horizontal geomagnetic field as an activity indicator. Annales Geophysicae, 19(9), 1107–1118. https://doi.org/10.5194/angeo-19-1107-2001
Vokhmyanin, M., Apatenkov, S., Gordeev, E., Andreeva, V., Partamies, N., Kauristie, K., & Juusola, L. (2021). Statistics on omega band properties and related geomagnetic variations. Journal of Geophysical Research: Space Physics, 126(7), e2021JA029468. https://doi.org/10.1029/2021JA029468
Waters, C., Anderson, B., & Liou, K. (2001). Estimation of global field aligned currents using the Iridium® system magnetometer data. Geophysical Research Letters, 28(11), 2165–2168. https://doi.org/10.1029/2000GL012725
Weigel, R., Klimas, A., & Vassiliadis, D. (2003). Solar wind coupling to and predictability of ground magnetic fields and their time derivatives. Journal of Geophysical Research, 108(A7). https://doi.org/10.1029/2002JA009627
Weigel, R., Vassiliadis, D., & Klimas, A. (2002). Coupling of the solar wind to temporal fluctuations in ground magnetic fields. Geophysical Research Letters, 29(19), 21. https://doi.org/10.1029/2002GL014740
Wild, J., Yeoman, T., Eglitis, P., & Opgenoorth, H. (2000). Multi-instrument observations of the electric and magnetic field structure of omega bands. Annales Geophysicae, 18(1), 99–110. https://doi.org/10.1007/s00585-000-0099-6
Zou, Y., Dowell, C., Ferdousi, B., Lyons, L., & Liu, J. (2022). Auroral drivers of large dB/dt during geomagnetic storms. Space Weather, 20(11), e2022SW003121. https://doi.org/10.1029/2022SW003121