Coupling; Global imaging; In Situ measurements; Ionosphere; Magnetosphere; Solar wind; Astronomy and Astrophysics; Space and Planetary Science
Abstract :
[en] How does solar wind energy flow through the Earth’s magnetosphere, how is it converted and distributed? is the question we want to address. We need to understand how geomagnetic storms and substorms start and grow, not just as a matter of scientific curiosity, but to address a clear and pressing practical problem: space weather, which can influence the performance and reliability of our technological systems, in space and on the ground, and can endanger human life and health. Much knowledge has already been acquired over the past decades, particularly by making use of multiple spacecraft measuring conditions in situ, but the infant stage of space weather forecasting demonstrates that we still have a vast amount of learning to do. A novel global approach is now being taken by a number of space imaging missions which are under development and the first tantalising results of their exploration will be available in the next decade. In this White Paper, submitted to ESA in response to the Voyage 2050 Call, we propose the next step in the quest for a complete understanding of how the Sun controls the Earth’s plasma environment: a tomographic imaging approach comprising two spacecraft in highly inclined polar orbits, enabling global imaging of magnetopause and cusps in soft X-rays, of auroral regions in FUV, of plasmasphere and ring current in EUV and ENA (Energetic Neutral Atoms), alongside in situ measurements. Such a mission, encompassing the variety of physical processes determining the conditions of geospace, will be crucial on the way to achieving scientific closure on the question of solar-terrestrial interactions.
Branduardi-Raymont, G. ; Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
Berthomier, M.; Laboratoire de Physique des Plasmas, Paris, France
Bogdanova, Y.V.; Rutherford Appleton Laboratory, Didcot, United Kingdom
Carter, J.A.; University of Leicester, Leicester, United Kingdom
Collier, M.; NASA Goddard Space Flight Center, Greenbelt, United States
Dimmock, A.; Swedish Institute of Space Physics, Uppsala, Sweden
Dunlop, M.; Rutherford Appleton Laboratory, Didcot, United Kingdom ; School of Space and Environment, Beihang University, Beijing, China
Fear, R.C.; University of Southampton, Southampton, United Kingdom
Forsyth, C.; Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Kronberg, E.A.; University of Munich, Munich, Germany
Laundal, K.M.; University of Bergen, Bergen, Norway
Lester, M.; University of Leicester, Leicester, United Kingdom
Milan, S.; University of Leicester, Leicester, United Kingdom
Oksavik, K.; University of Bergen, Bergen, Norway
Østgaard, N.; University of Bergen, Bergen, Norway
Palmroth, M.; University of Helsinki, Helsinki, Finland
Plaschke, F.; Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Porter, F.S.; NASA Goddard Space Flight Center, Greenbelt, United States
Rae, I.J.; Northumbria University, Newcastle upon Tyne, United Kingdom
Read, A.; University of Leicester, Leicester, United Kingdom
Samsonov, A.A.; Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
Sembay, S.; University of Leicester, Leicester, United Kingdom
Shprits, Y.; German Research Centre for Geosciences, Potsdam, Germany
Sibeck, D.G.; NASA Goddard Space Flight Center, Greenbelt, United States
Walsh, B.; Boston University, Boston, United States
Yamauchi, M.; Swedish Institute of Space Physics, Kiruna, Sweden
GBR and AAS acknowledge support by the UK Space Agency under grant ST/T002964/1. YVB is supported by the STFC RAL Space In-house research grant. EAK is supported by the German Research Foundation (DFG) under number KR 4375/2\u2009\u2212\u20091 within SPP \u2018Dynamic Earth\u2019. KML, KO and N\u00D8 acknowledge financial support by the Research Council of Norway under the contract 223,252. SEM is supported by the Science and Technology Facilities Council (STFC), UK, grant no. ST/S000429/1.
Akasofu, S.-I.: Auroral substorms: Search for processes causing the expansion phase in terms of the electric current approach. Space Sci. Rev. 212, 341–381 (2017)
Angelopoulos, V.: The THEMIS mission. Space Sci. Rev. 141, 5–34 (2008)
Benkevich, L., Lyatsky, W., Cogger, L.L.: Field-aligned currents between conjugate hemispheres. J. Geophys. Res. 105, 27727 (2000)
Borovsky, J.E., Denton, M.H.: Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 111, A07S08 (2006)
Borovsky, J.E., Denton, M.H.: A statistical look at plasmaspheric drainage plumes. J. Geophys. Res. 113, A09221 (2008)
Boudouridis, A., Lyons, L.R., Zesta, E., Ruohoniemi, J.M.: Dayside reconnection enhancement resulting from a solar wind dynamic pressure increase. J. Geophys. Res. 112, A06201 (2007)
Brambles, O.J., Lotko, W., Zhang, B., Wiltberger, M., Lyon, J., Strangeway, R. J.: Magnetosphere sawtooth oscillations induced by ionospheric outflow. Science, 332, 1183–1186 (2011)
Branduardi-Raymont, G., et al.: SMILE definition study report, European Space Agency, ESA/SCI, 1 (2018). https://doi.org/10.5270/esa.smile.definition_study_report-2018-12
Carter, J.A., Milan, S.E., Fear, R.C., Walach, M.-T., Harrison, Z.A., Paxton, L.J., Hubert, B.: Transpolar arcs observed simultaneously in both hemispheres. J. Geophys. Res. 122, 6107–6120 (2017)
Carter, J.A., Milan, S.E., Fogg, A.R., Sangha, H., Lester, M., Paxton, L.J., Anderson, B.: The evolution of long duration cusp spot emission during lobe reconnection with respect to field-aligned currents. J. Geophys. Res. Space Physics 125, e2020JA027922 (2020)
Cassak, P.A., Shay, M.A.:: Scaling of asymmetric magnetic reconnection: General theory and collisional simulations. Phys. Plasmas. 14, 102114–102125 (2007)
Chisham, G., Lester, M., Milan, S.E., Freeman, M.P., Bristow, W.A., Grocott, A., McWilliams, K.A., Ruohoniemi, J.M., Yeoman, T.K., Dyson, P.L., Greenwald, R.A., Kikuchi, T., Pinnock, M., Rash, J.P.S., Sato, N., Sofko, G.J., Villain, J.-P., Walker, A.D.M.: A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions. Surv. Geophys. 28, 33–109 (2007)
Cowley, S.W.H.: The causes of convection in the Earth’s magnetosphere: A review of developments during the IMS. Rev. Geophys. Space Phys. 20, 531–565 (1982)
Daglis, I.A., Thorne, R.M., Baumjohann, W., Orsini, S.: The terrestrial ring current: origin, formation and decay. Rev. of Geophys. 37, 407–438 (1999)
DeJong, A.D., Ridley, A.J., Cai, X., Clouer, C.R.: A statistical study of BRIs (SMCs), isolated substorms, and individual sawtooth injections. J. Geophys. Res. 114, A08215 (2009)
Denton, M.H., Borovsky, J.E., Skoug, R.M., Thomsen, M.F., Lavraud, B., Henderson, M.G., McPherron, R.L., Zhang, J.C., Liemohn, M.W.: Geomagnetic storms driven by ICME- and CIR-dominated solar wind, J. Geophys. Res. 111, A07S07 (2006)
Dungey, J.W.: Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961)
Eastwood, J.P., Hietala, H., Toth, G., Phan, T.D., Fujimoto, M.: What controls the structure and dynamics of Earth’s magnetosphere? Space Sci. Rev. 188, 251–286 (2015)
Frey, H.U., Mende, S.B., Immel, T.J., Fuselier, S.A., Claflin, E.S., Gerard, J.C., Hubert, B.: Proton aurora in the cusp. J. Geophys. Res. 107, 1091–1107 (2002)
Goldstein, J., McComas, D.J.: Five years of stereo magnetospheric imaging by TWINS. Space Sci. Rev. 180, 39–70 (2013)
Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C., Smith, E.J., Tang, F., Akasofu, S.-I.: Solar wind - magnetosphere coupling during intense magnetic storms (1978–1979). J. Geophys. Res. 94, 8835–8851 (1989)
Gordeev, E., Sergeev, V., Honkonen, I., Kuznetsova, M., Rastätter, L., Palmroth, M., Janhunen, P., Tóth, G., Lyon, J., Wiltberger, M.: Assessing the performance of community-available global MHD models using key system parameters and empirical relationships. Space Weather (2015). 10.1002/2015SW001307 DOI: 10.1002/2015SW001307
Hamilton, D.C., Gloeckler, G., Ipavich, F.M., Stüdemann, W., Wilken, B., Kremser, G.: Ring current development during the great geomagnetic storm of February 1986. J. Geophys. Res. 93, 14343–14355 (1988)
Herrera, D., Maget, V.F., Sicard-Piet, A.: Characterizing magnetopause shadowing effects in the outer electron radiation belt during geomagnetic storms. J. Geophys. Res. 121, 9517–9530 (2016)
Hsu, T.-S., McPherron, R.L.: Average characteristics of triggered and non-triggered substorms. J. Geophys. Res. 109, A07208 (2004)
Hubert, B., Gérard, J.-C., Milan, S.E., Cowley, S.W.H.: Magnetic reconnection during steady magnetospheric convection and other magnetospheric modes. Ann. Geophys. 35, 505–524 (2017)
Keller, K.A., Fok, M.-C., Narock, A., Hesse, M., Rastaetter, L., Kuznetsova, M.M., Gombosi, T.I., DeZeeuw, D.L.: Effect of multiple substorms on the buildup of the ring current. J. Geophys. Res. 110, A08202 (2005)
Laundal, K.M., Østgaard, N.: Asymmetric auroral intensities in the Earth’s Northern and Southern hemispheres. Nature. 460, 491–493 (2009)
Liemohn, M.W., Kozyra, J.U., Thomsen, M.F., Roeder, J.L., Lu, G., Borovsky, J.E., Cayto, T.E.: Dominant role of the asymmetric ring current in producing the stormtime Dst*. J. Geophys. Res. 106, 10883–10904 (2001)
Liemohn, M., Ganushkina, N.Y., De Zeeuw, D.L., Rastaetter, L., Kuznetsova, M., Welling, D.T., Toth, G., Ilie, R., Gombosi, T.I., van der Holst, B.: Real-time SWMF at CCMC: Assessing the Dst output from continuous operational simulations. Space Weather 16, 1583–1603 (2018)
Liou, K., Newell, P.T., Meng, C.-I., Wu, C.-C., Lepping, R.P.: Investigation of external triggering of substorms with Polar ultraviolet imager observations. J. Geophys. Res. 108, 1364–1377 (2003)
Liu, Y.D., Hu, H., Wang, R., Yang, Z., Zhu, B., Liu, Y.A., Luhmann, J.G., Richardson, J.D.: Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys. J. Lett. 809, L34–L39 (2015)
Luo, H., Kronberg, E.A., Nykyri, K., Trattner, K.J., Daly, P.W., Chen, G.X., Du, A.M., Ge, Y.S.: IMF dependence of energetic oxygen and hydrogen ion distributions in the near-Earth magnetosphere. J. Geophys. Res. 122, 5168–5180 (2017)
McComas, D.J., et al.: (40 co-authors): The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of-Opportunity. Space Sci. Rev. 142, 157–231 (2009)
McFadden, J.P., Carlson, C.W., Larson, D., Bonnell, J., Mozer, F.S., Angelopoulos, V., Glassmeier, K.-H., Auster, U.: Structure of plasmaspheric plumes and their participation in magnetopause reconnection: First results from THEMIS. Geophys. Res. Lett. 35, L17S10 (2008)
McPherron, R.L.: Introduction to space physics. In: Kivelson, M.G., Russell, C.T. (eds.) Cambridge University Press, Cambridge (1995)
McPherron, R.L., Weygand, J.M., Hsu, T.-S.: Response of the Earth’s magnetosphere to changes in the solar wind. J. Atmos. Solar Terr. Phys. 70, 303–315 (2008)
Mende, S.B., Heetderks, H., Frey, H.U., Stock, J.M., Lampton, M., Geller, S.P., Abiad, R., Siegmund, O.H.W., Habraken, S., Renotte, E., Jamar, C., Rochus, P., Gerard, J.-C., Sigler, R., Lauche, H.: Far ultraviolet imaging from the Image spacecraft. 3. Spectral imaging of Lyman-α and OI 135.6 nm. Space Sci. Rev. 91, 287–318 (2000)
Milan, S.E.: Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval. Geophys. Res. Lett. 36, L18101 (2009)
Milan, S.E., Lester, M., Cowley, S.W.H., Brittnacher, M.: Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field. Ann. Geophys. 18, 436–444 (2000)
Milan, S.E., Hubert, B., Grocott, A.: Formation and motion of a transpolar arc in response to dayside and nightside reconnection. J. Geophys. Res. 110, A01212 (2005)
Mitchell, D.G., Jaskulek, S.E., Schlemm, C.E., Keath, E.P., Thomson, R.E., Tossman, B.E., Boldt, J.D., Hayes, J.R., Andrews, G.B., Paschalidis, N., Hamilton, D.C., Lundgren, R.A., Tums, E.O., Wilson, P.I.V., Voss, H.D., Prentice, D., Hsieh, K.C., Curtis, C.C., Powell, F.R.: High energy neutral atom (hena) imager for the IMAGE mission. Space Sci. Rev. 91, 67–112 (2000)
Mitchell, D.G., Hsieh, K.C., Curtis, C.C., Hamilton, D.C., Voss, H.D., Roelof, E.C., Brandt, P.C.: Imaging two geomagnetic storms in energetic neutral atoms. Geophys. Res. Lett. 28, 1151–1154 (2001)
Newell, P.T., Gjerloev, J.W.: Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 116, A12211 (2011)
Otto, A., Fairfield, D.H.: Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observation. J. Geophys. Res. 105, 21175–21190 (2000)
Plaschke, F., Hietala, H., Archer, M., Blanco-Cano, X., Kajdic, P., Karlsson, T., Lee, S.H., Omidi, N., Palmroth, M., Roytershteyn, V., Schmid, D., Sergeev, V., Sibeck, D.: Jets downstream of collisionless shocks. Space Sci. Rev. 214, 81–157 (2018)
Pulkkinen, T.I., Palmroth, M., Koskinen, H.E.J., Laitinen, T.V., Goodrich, C.C., Merkin, V.G., Lyon, J.G.: Magnetospheric modes and solar wind energy coupling efficiency. J. Geophys. Res. 115, A03207 (2010)
Reidy, J.A., Fear, R.C., Whiter, D.K., Lanchester, B., Kavanagh, A.J., Paxton, L.J., Zhang, Y., Lester, M.: Multi-instrument observation of simultaneous polar cap auroras on open and closed magnetic field lines. J. Geophys. Res. 122, 4367–4386 (2017)
Richmond, A.D., Roble, R.G.: Electrodynamic effects of thermospheric winds from the NCAR Thermospheric General Circulation Model. J. Geophys. Res. 92, 12365–12376 (1987)
Roelof, E.C., Brand, P.C., Mitchell, D.G.: Derivation of currents and diamagnetic effects from global plasma pressure distributions obtained by IMAGE/HENA. Adv. Space Res. 33, 747–751 (2004)
Runge, J., Balasis, G., Daglis, I.A., Papadimitriou, C., Donner, R.V.: Common solar wind drivers behind magnetic storm – magnetospheric substorm dependency. Nature 8, 16987–16996 (2018)
Samsonov, A.A., Sibeck, D.G., Dmitrieva, N.P., Semenov, V.S.: What happens before a southward IMF turning reaches the magnetopause? Geophys. Res. Lett. (2017) 10.1002/2017GL075020 DOI: 10.1002/2017GL075020
Sandel, B.R., Broadfoot, A., Curtis, C., King, R., Stone, T., Hill, R., Chen, J., Siegmund, O., Raffanti, R., Allred, D., Turley, R., Gallagher, D.: The extreme ultraviolet imager investigation for the IMAGE mission. Space Sci. Rev. 91, 197–242 (2000)
Sandel, B.R., Goldstein, J., Gallagher, D.L., Spasojevic, M.: Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere. Space Sci. Rev. 109, 25–46 (2003)
Sergeev, V.A., Pellinen, R.J., Pulkkinen, T.I.: Steady Magnetospheric convection: A review of recent results. Space Sci. Rev. 75, 551–604 (1996)
Shukhtina, M.A., Dmitrieva, N.P., Popova, N.G., Sergeev, V.A., Yahnin, A.G., Despirak, I.V.: Observational evidence of the loading-unloading substorm scheme. Geophys. Res. Lett. 32, L17107 (2005)
Sibeck, D.G., et al.: (34 co-authors): Imaging plasma density structures in the soft X-rays generated by solar wind charge exchange with neutrals. Space Sci. Rev. 214, 79–202 (2018)
Sonnerup, B.U.O., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S.J., Asbridge, J.R., Gosling, J.T., Russell, C.T.: Evidence for magnetic field reconnection at the Earth’s magnetopause. J. Geophys. Res. 86, 10049 (1981)
Takahashi, S., Iyemori, T., Takeda, M.: A simulation of the storm-time ring current. Planet. Space Sci. 38, 1133–1141 (1990)
Taylor, M.G.G.T., et al.: (25 co-authors): The plasma sheet and boundary layers under northward IMF: A multi-point and multi-instrument perspective. Adv. Space Res. 41, 1619–1629 (2008)
Trattner, K.J., Mulcock, J.S., Petrinec, S.M., Fuselier, S.A.: Location of the reconnection line at the magnetopause during southward IMF conditions. Geophys. Res. Lett. 34, L03108 (2007)
Troshichev, O., Janzhura, A., Stauning, P.: Unified PCN and PCS indices: Method of calculation, physical sense, and dependence on the IMF azimuthal and northward components. J. Geophys. Res. 111, A05208 (2006)
Tsyganenko, N.A.: Data-based modelling of the Earth’s dynamic magnetosphere: a review. Ann. Geophys. 31, 1745–1772 (2013)
Turner, D.L., Angelopoulos, V., Li, W., Hartinger, M.D., Usanova, M., Mann, I.R., Bortnik, J., Shprits, Y.: On the storm-time evolution of relativistic electron phase space density in Earth’s outer radiation belt. J. Geophys. Res. 118, 2196–2212 (2013)
Walach, M.T., Milan, S.E., Murphy, K.R., Carter, J.A., Hubert, B.A., Grocott, A.: Comparative study of large-scale auroral signatures of substorms, steady magnetospheric convection events, and saw-tooth events. J. Geophys. Res. 122, 6357–6373 (2017)
Wild, J.A., Woodfield, E.E., Morle, S.K.: On the triggering of auroral substorms by northward turnings of the interplanetary magnetic field. Ann. Geophys. 27, 3559–3570 (2009)