[en] Arbuscular mycorrhizal (AM) fungi (e.g., Rhizophagus species) recruit specific bacterial species in their hyphosphere. However, the chemical interplay and the mutual benefit of this intricate partnership have not been investigated yet, especially as it involves bacteria known as strong producers of antifungal compounds such as Bacillus velezensis. Here, we show that the soil-dwelling B. velezensis migrates along the hyphal network of the AM fungus R. irregularis, forming biofilms and inducing cytoplasmic flow in the AM fungus that contributes to host plant root colonization by the bacterium. During hyphosphere colonization, R. irregularis modulates the biosynthesis of specialized metabolites in B. velezensis to ensure stable coexistence and as a mechanism to ward off mycoparasitic fungi and bacteria. These mutual benefits are extended into a tripartite context via the provision of enhanced protection to the host plant through the induction of systemic resistance.
Disciplines :
Microbiology
Author, co-author :
Anckaert, Adrien ✱; Université de Liège - ULiège > TERRA Research Centre
Declerck, Stéphane ✱; Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
Poussart, Laure-Anne; Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
Lambert, Stéphanie ; Université de Liège - ULiège > Département GxABT > Microbial technologies
Helmus, Catherine ; Université de Liège - ULiège > Département GxABT > Microbial technologies
Boubsi, Farah ; Université de Liège - ULiège > TERRA Research Centre
Steels, Sébastien ; Université de Liège - ULiège > Département GxABT > Microbial technologies
Argüelles-Arias, Anthony; Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
Calonne-Salmon, Maryline; Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
Ongena, Marc ; Université de Liège - ULiège > TERRA Research Centre > Microbial technologies
✱ These authors have contributed equally to this work.
Language :
English
Title :
The biology and chemistry of a mutualism between a soil bacterium and a mycorrhizal fungus.
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture SPW DG03-DGARNE - Service Public de Wallonie. Direction Générale Opérationnelle Agriculture, Ressources naturelles et Environnement F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This work was supported by the PDR research project (ID 40013634) from the F.R.S.-FNRS (National Fund for Scientific Research in Belgium), by the Microsoilsystem project funded by the Walloon Region (ID D31-1388SPW/DGO3), and by the EOS project (ID 30650620) from the FWO/F.R.S.-FNRS. A.A. and F.B. are recipients of an F.R.I.A. fellowship (F.R.S.-FNRS), and M.O. is Research Director at the F.R.S.-FNRS. We gratefully acknowledge Andrew Zickler and Francois Ferrais for technical help with the establishment of the experimental setup. We thank Jos Raaijmakers (Netherlands Institute for Ecology, Wageningen) and Monica H\u00F6fte (Ghent University) for their critical reading of the manuscript.
Wipf, D., Krajinski, F., van Tuinen, D., Recorbet, G., Courty, P.E., Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol. 223 (2019), 1127–1142, 10.1111/nph.15775.
Brundrett, M.C., Tedersoo, L., Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220 (2018), 1108–1115, 10.1111/nph.14976.
Parniske, M., Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6 (2008), 763–775, 10.1038/nrmicro1987.
Duhamel, M., Pel, R., Ooms, A., Bücking, H., Jansa, J., Ellers, J., Van Straalen, N.M., Wouda, T., Vandenkoornhuyse, P., Kiers, E.T., Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?. Ecology 94 (2013), 2019–2029, 10.1890/12-1943.1.
Johnson, D., Gilbert, L., Interplant signalling through hyphal networks. New Phytol. 205 (2015), 1448–1453, 10.1111/nph.13115.
Babikova, Z., Gilbert, L., Bruce, T.J.A., Birkett, M., Caulfield, J.C., Woodcock, C., Pickett, J.A., Johnson, D., Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16 (2013), 835–843, 10.1111/ELE.12115.
Durant, E., Hoysted, G.A., Howard, N., Sait, S.M., Childs, D.Z., Johnson, D., Field, K.J., Herbivore-driven disruption of arbuscular mycorrhizal carbon-for-nutrient exchange is ameliorated by neighboring plants. Curr. Biol. 33 (2023), 2566–2573.e4, 10.1016/j.cub.2023.05.033.
Cameron, D.D., Neal, A.L., van Wees, S.C.M., Ton, J., Mycorrhiza-induced resistance: more than the sum of its parts?. Trends Plant Sci. 18 (2013), 539–545, 10.1016/j.tplants.2013.06.004.
Jung, S.C., Martinez-Medina, A., Lopez-Raez, J.A., Pozo, M.J., Mycorrhiza-Induced Resistance and Priming of Plant Defenses. J. Chem. Ecol. 38 (2012), 651–664, 10.1007/s10886-012-0134-6.
Shi, J., Wang, X., Wang, E., Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annu. Rev. Plant Biol. 74 (2023), 569–607, 10.1146/annurev-arplant-061722-090342.
Scheublin, T.R., Sanders, I.R., Keel, C., van der Meer, J.R., Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J. 4 (2010), 752–763, 10.1038/ismej.2010.5.
Luthfiana, N., Inamura, N., Tantriani, Sato, T., Saito, K., Oikawa, A., Chen, W., Tawaraya, K., Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Mycorrhiza 31 (2021), 403–412, 10.1007/s00572-020-01016-z.
Toljander, J.F., Lindahl, B.D., Paul, L.R., Elfstrand, M., Finlay, R.D., Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol. Ecol. 61 (2007), 295–304, 10.1111/j.1574-6941.2007.00337.x.
Emmett, B.D., Lévesque-Tremblay, V., Harrison, M.J., Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 15 (2021), 2276–2288, 10.1038/s41396-021-00920-2.
Basiru, S., Ait Si Mhand, K., Hijri, M., Disentangling arbuscular mycorrhizal fungi and bacteria at the soil-root interface. Mycorrhiza 33 (2023), 119–137, 10.1007/s00572-023-01107-7.
Faghihinia, M., Jansa, J., Halverson, L.J., Staddon, P.L., Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns. Biol. Fertil. Soils 59 (2023), 17–34, 10.1007/s00374-022-01683-4.
Duan, S., Feng, G., Limpens, E., Bonfante, P., Xie, X., Zhang, L., Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Published online July 16, 2024 Nat. Rev. Microbiol., xxx, 2024, xxx, 10.1038/s41579-024-01073-7.
Jin, Z., Jiang, F., Wang, L., Declerck, S., Feng, G., Zhang, L., Arbuscular mycorrhizal fungi and Streptomyces: brothers in arms to shape the structure and function of the hyphosphere microbiome in the early stage of interaction. Microbiome, 12, 2024, 1, 10.1186/s40168-023-01727-3.
Zhang, L., Feng, G., Declerck, S., Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J. 12 (2018), 2339–2351, 10.1038/s41396-018-0171-4.
Li, X., Zhao, R., Li, D., Wang, G., Bei, S., Ju, X., An, R., Li, L., Kuyper, T.W., Christie, P., et al. Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil. Microbiome, 11, 2023, 45, 10.1186/s40168-023-01466-5.
Jiang, F., Zhang, L., Zhou, J., George, T.S., Feng, G., Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 230 (2021), 304–315, 10.1111/nph.17081.
St-Arnaud, M., Hamel, C., Vimard, B., Caron, M., Fortin, J.A., Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol. Res. 100 (1996), 328–332, 10.1016/S0953-7562(96)80164-X.
Cranenbrouck, S., Voets, L., Bivort, C., Renard, L., Strullu, D.-G., Declerck, S., Methodologies for in Vitro Cultivation of Arbuscular Mycorrhizal Fungi with Root Organs. In Vitro Culture of Mycorrhizas, 2005, Springer, 341–375, 10.1007/3-540-27331-X_18.
Whiteside, M.D., Werner, G.D.A., Caldas, V.E.A., van't Padje, A., Dupin, S.E., Elbers, B., Bakker, M., Wyatt, G.A.K., Klein, M., Hink, M.A., et al. Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks. Curr. Biol. 29 (2019), 2043–2050.e8, 10.1016/J.CUB.2019.04.061.
Wang, F., Zhang, L., Zhou, J., Rengel, Z., George, T.S., Feng, G., Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions. Plant Soil 481 (2022), 1–22, 10.1007/s11104-022-05621-z.
Alaux, P.-L., Naveau, F., Declerck, S., Cranenbrouck, S., Common Mycorrhizal Network Induced JA/ET Genes Expression in Healthy Potato Plants Connected to Potato Plants Infected by Phytophthora infestans. Front. Plant Sci., 11, 2020, 602, 10.3389/fpls.2020.00602.
Andrić, S., Meyer, T., Ongena, M., Bacillus Responses to Plant-Associated Fungal and Bacterial Communities. Front. Microbiol., 11, 2020, 1350, 10.3389/fmicb.2020.01350.
Andrić, S., Rigolet, A., Argüelles Arias, A., Steels, S., Hoff, G., Balleux, G., Ongena, L., Höfte, M., Meyer, T., Ongena, M., Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor. ISME J. 17 (2023), 263–275, 10.1038/s41396-022-01337-1.
Hoff, G., Arguelles Arias, A., Boubsi, F., Pršić, J., Meyer, T., Ibrahim, H.M.M., Steels, S., Luzuriaga, P., Legras, A., Franzil, L., et al. Surfactin Stimulated by Pectin Molecular Patterns and Root Exudates Acts as a Key Driver of the Bacillus-Plant Mutualistic Interaction. mBio, 12, 2021, e0177421, 10.1128/mBio.01774-21.
Boubsi, F., Hoff, G., Arguelles Arias, A., Steels, S., Andrić, S., Anckaert, A., Roulard, R., Rigolet, A., van Wuytswinkel, O., Ongena, M., Pectic homogalacturonan sensed by Bacillus acts as host associated cue to promote establishment and persistence in the rhizosphere. iScience, 26, 2023, 107925, 10.1016/j.isci.2023.107925.
Loján, P., Demortier, M., Velivelli, S.L.S., Pfeiffer, S., Suárez, J.P., de Vos, P., Prestwich, B.D., Sessitsch, A., Declerck, S., Impact of plant growth-promoting rhizobacteria on root colonization potential and life cycle of Rhizophagus irregularis following co-entrapment into alginate beads. J. Appl. Microbiol. 122 (2017), 429–440, 10.1111/jam.13355.
Alaux, P.-L., César, V., Naveau, F., Cranenbrouck, S., Declerck, S., Impact of Rhizophagus irregularis MUCL 41833 on disease symptoms caused by Phytophthora infestans in potato grown under field conditions. Crop Prot. 107 (2018), 26–33, 10.1016/j.cropro.2018.01.003.
Gbongue, L.-R., Lalaymia, I., Zeze, A., Delvaux, B., Declerck, S., Increased Silicon Acquisition in Bananas Colonized by Rhizophagus irregularis MUCL 41833 Reduces the Incidence of Pseudocercospora fijiensis. Front. Plant Sci., 9, 2018, 1977, 10.3389/fpls.2018.01977.
Allard-Massicotte, R., Tessier, L., Lécuyer, F., Lakshmanan, V., Lucier, J.-F., Garneau, D., Caudwell, L., Vlamakis, H., Bais, H.P., Beauregard, P.B., Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors. mBio, 7, 2016, e01664-16, 10.1128/mBio.01664-16.
Bago, B., Azcón-aguilar, C., Goulet, A., Piché, Y., Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol. 139 (1998), 375–388, 10.1046/j.1469-8137.1998.00199.x.
Massalha, H., Korenblum, E., Malitsky, S., Shapiro, O.H., Aharoni, A., Live imaging of root–bacteria interactions in a microfluidics setup. Proc. Natl. Acad. Sci. USA 114 (2017), 4549–4554, 10.1073/pnas.1618584114.
Stoll, A., Salvatierra-Martínez, R., González, M., Araya, M., The Role of Surfactin Production by Bacillus velezensis on Colonization, Biofilm Formation on Tomato Root and Leaf Surfaces and Subsequent Protection (ISR) against Botrytis cinerea. Microorganisms, 9, 2021, 2251, 10.3390/microorganisms9112251.
Luo, C., Zhou, H., Zou, J., Wang, X., Zhang, R., Xiang, Y., Chen, Z., Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl. Microbiol. Biotechnol. 99 (2015), 1897–1910, 10.1007/s00253-014-6195-4.
Cao, Y., Pi, H., Chandrangsu, P., Li, Y., Wang, Y., Zhou, H., Xiong, H., Helmann, J.D., Cai, Y., Antagonism of Two Plant-Growth Promoting Bacillus velezensis Isolates Against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep., 8, 2018, 4360, 10.1038/s41598-018-22782-z.
Ghelardi, E., Salvetti, S., Ceragioli, M., Gueye, S.A., Celandroni, F., Senesi, S., Contribution of Surfactin and SwrA to Flagellin Expression, Swimming, and Surface Motility in Bacillus subtilis. Appl. Environ. Microbiol. 78 (2012), 6540–6544, 10.1128/AEM.01341-12.
Al-Ali, A., Deravel, J., Krier, F., Béchet, M., Ongena, M., Jacques, P., Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environ. Sci. Pollut. Res. Int. 25 (2018), 29910–29920, 10.1007/s11356-017-0469-1.
Schaffer, G.F., Peterson, R.L., Modifications to clearing methods used in combination with vital staining of roots colonized with vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 4 (1993), 29–35, 10.1007/BF00203248.
Bago, B., Zipfel, W., Williams, R.M., Jun, J., Arreola, R., Lammers, P.J., Pfeffer, P.E., Shachar-Hill, Y., Translocation and Utilization of Fungal Storage Lipid in the Arbuscular Mycorrhizal Symbiosis. Plant Physiol. 128 (2002), 108–124, 10.1104/pp.010466.
Hammer, E.C., Arellano-Caicedo, C., Mafla-Endara, P.M., Kiers, E.T., Shimizu, T., Ohlsson, P., Aleklett, K., Hyphal exploration strategies and habitat modification of an arbuscular mycorrhizal fungus in microengineered soil chips. Fungal Ecol., 67, 2024, 101302, 10.1016/J.FUNECO.2023.101302.
Traxler, M.F., Kolter, R., Natural products in soil microbe interactions and evolution. Nat. Prod. Rep. 32 (2015), 956–970, 10.1039/C5NP00013K.
Ongena, M., Jacques, P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16 (2008), 115–125, 10.1016/j.tim.2007.12.009.
Anckaert, A., Arias, A.A., Hoff, G., Calonne-Salmon, M., Declerck, S., Ongena, M., The use of Bacillus spp. as bacterial biocontrol agents to control plant diseases. Ravensberg, W., Köhl, J., (eds.) Microbial Bioprotectants for Plant Disease Management, 2021, Burleigh Dodds Science Publishing, 247–300, 10.19103/AS.2021.0093.10.
Mantil, E., Buznytska, I., Daly, G., Ianoul, A., Avis, T.J., Role of Lipid Composition in the Interaction and Activity of the Antimicrobial Compound Fengycin with Complex Membrane Models. J. Membr. Biol. 252 (2019), 627–638, 10.1007/s00232-019-00100-6.
Balleza, D., Alessandrini, A., Beltrán García, M.J., Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides. J. Membr. Biol. 252 (2019), 131–157, 10.1007/s00232-019-00067-4.
Nasir, M.N., Thawani, A., Kouzayha, A., Besson, F., Interactions of the natural antimicrobial mycosubtilin with phospholipid membrane models. Colloids Surf. B Biointerfaces 78 (2010), 17–23, 10.1016/j.colsurfb.2010.01.034.
Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., Ongena, M., Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol. Ecol. 79 (2012), 176–191, 10.1111/j.1574-6941.2011.01208.x.
Medeot, D.B., Bertorello-Cuenca, M., Liaudat, J.P., Alvarez, F., Flores-Cáceres, M.L., Jofré, E., Improvement of biomass and cyclic lipopeptides production in Bacillus amyloliquefaciens MEP218 by modifying carbon and nitrogen sources and ratios of the culture media. Biol. Control 115 (2017), 119–128, 10.1016/j.biocontrol.2017.10.002.
Lu, H., Qian, S., Muhammad, U., Jiang, X., Han, J., Lu, Z., Effect of fructose on promoting fengycin biosynthesis in Bacillus amyloliquefaciens fmb-60. J. Appl. Microbiol. 121 (2016), 1653–1664, 10.1111/jam.13291.
Purin, S., Rillig, M.C., Parasitism of arbuscular mycorrhizal fungi: reviewing the evidence. FEMS Microbiol. Lett. 279 (2008), 8–14, 10.1111/j.1574-6968.2007.01007.x.
De Jaeger, N., Declerck, S., De La Providencia, I.E., Mycoparasitism of arbuscular mycorrhizal fungi: a pathway for the entry of saprotrophic fungi into roots. FEMS Microbiol. Ecol. 73 (2010), 312–322, 10.1111/J.1574-6941.2010.00903.X.
Xie, J., Sun, X., Xia, Y., Tao, L., Tan, T., Zhang, N., Xun, W., Zhang, R., Kovács, Á.T., Xu, Z., et al. Bridging the Gap: biofilm-mediated establishment of Bacillus velezensis on Trichoderma guizhouense mycelia. Preprint at bioRxiv, xxx, 2024, xxx, 10.1101/2024.06.06.597722.
Fifani, B., Steels, S., Helmus, C., Delacuvellerie, A., Deracinois, B., Phalip, V., Delvigne, F., Jacques, P., Coculture of Trichoderma harzianum and Bacillus velezensis Based on Metabolic Cross-Feeding Modulates Lipopeptide Production. Microorganisms, 10, 2022, 1059, 10.3390/microorganisms10051059.
Williamson, B., Tudzynski, B., Tudzynski, P., Van Kan, J.A.L., Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8 (2007), 561–580, 10.1111/j.1364-3703.2007.00417.x.
Dean, R., Van Kan, J.A.L., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J., et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13 (2012), 414–430, 10.1111/j.1364-3703.2011.00783.x.
Scherlach, K., Hertweck, C., Chemical Mediators at the Bacterial-Fungal Interface. Annu. Rev. Microbiol. 74 (2020), 267–290, 10.1146/ANNUREV-MICRO-012420-081224.
Ali, S., Hameed, S., Shahid, M., Iqbal, M., Lazarovits, G., Imran, A., Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol. Res., 232, 2020, 126389, 10.1016/J.MICRES.2019.126389.
Deveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S., Hacquard, S., Hervé, V., Labbé, J., Lastovetsky, O.A., et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42 (2018), 335–352, 10.1093/femsre/fuy008.
Abeysinghe, G., Kuchira, M., Kudo, G., Masuo, S., Ninomiya, A., Takahashi, K., Utada, A.S., Hagiwara, D., Nomura, N., Takaya, N., et al. Fungal mycelia and bacterial thiamine establish a mutualistic growth mechanism. Life Sci. Alliance, 3, 2020, e202000878, 10.26508/lsa.202000878.
Arrebola, E., Jacobs, R., Korsten, L., Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108 (2010), 386–395, 10.1111/j.1365-2672.2009.04438.x.
Jiang, C.-H., Liao, M.-J., Wang, H.-K., Zheng, M.-Z., Xu, J.-J., Guo, J.-H., Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol. Control 126 (2018), 147–157, 10.1016/j.biocontrol.2018.07.017.
Calvo, H., Mendiara, I., Arias, E., Blanco, D., Venturini, M.E., The role of iturin A from B. amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots. Food Microbiol. 82 (2019), 62–69, 10.1016/j.fm.2019.01.010.
Weete, J.D., Abril, M., Blackwell, M., Phylogenetic Distribution of Fungal Sterols. PLoS One, 5, 2010, e10899, 10.1371/journal.pone.0010899.
Wewer, V., Brands, M., Dörmann, P., Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant J. 79 (2014), 398–412, 10.1111/tpj.12566.
Kameoka, H., Gutjahr, C., Functions of Lipids in Development and Reproduction of Arbuscular Mycorrhizal Fungi. Plant Cell Physiol. 63 (2022), 1356–1365, 10.1093/pcp/pcac113.
Ongena, M., Jacques, P., Touré, Y., Destain, J., Jabrane, A., Thonart, P., Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol. 69 (2005), 29–38, 10.1007/s00253-005-1940-3.
Fan, H., Ru, J., Zhang, Y., Wang, Q., Li, Y., Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol. Res. 199 (2017), 89–97, 10.1016/j.micres.2017.03.004.
Zhang, L., Xu, M., Liu, Y., Zhang, F., Hodge, A., Feng, G., Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol. 210 (2016), 1022–1032, 10.1111/nph.13838.
Kobayashi, K., Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis. Environ. Microbiol. 17 (2015), 1365–1376, 10.1111/1462-2920.12613.
Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S., Klessig, D.F., Methyl Salicylate Is a Critical Mobile Signal for Plant Systemic Acquired Resistance. Science 318 (2007), 113–116, 10.1126/science.1147113.
Bais, H.P., Fall, R., Vivanco, J.M., Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiol. 134 (2004), 307–319, 10.1104/pp.103.028712.
Aleti, G., Lehner, S., Bacher, M., Compant, S., Nikolic, B., Plesko, M., Schuhmacher, R., Sessitsch, A., Brader, G., Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environ. Microbiol. 18 (2016), 2634–2645, 10.1111/1462-2920.13405.
Henry, G., Deleu, M., Jourdan, E., Thonart, P., Ongena, M., The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell. Microbiol. 13 (2011), 1824–1837, 10.1111/j.1462-5822.2011.01664.x.
Deleu, M., Lorent, J., Lins, L., Brasseur, R., Braun, N., El Kirat, K., Nylander, T., Dufrêne, Y.F., Mingeot-Leclercq, M.P., Effects of surfactin on membrane models displaying lipid phase separation. Biochim. Biophys. Acta 1828 (2013), 801–815, 10.1016/j.bbamem.2012.11.007.
Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.-L., Thonart, P., Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9 (2007), 1084–1090, 10.1111/j.1462-2920.2006.01202.x.
Raaijmakers, J.M., de Bruijn, I., Nybroe, O., Ongena, M., Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34 (2010), 1037–1062, 10.1111/J.1574-6976.2010.00221.X.
Oni, F.E., Esmaeel, Q., Onyeka, J.T., Adeleke, R., Jacquard, C., Clement, C., Gross, H., Ait Barka, E.A., Höfte, M., Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules, 27, 2022, 372, 10.3390/MOLECULES27020372.
Worrich, A., Stryhanyuk, H., Musat, N., König, S., Banitz, T., Centler, F., Frank, K., Thullner, M., Harms, H., Richnow, H.H., et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat. Commun., 8, 2017, 15472, 10.1038/ncomms15472.
Miquel Guennoc, C.M., Rose, C., Labbé, J., Deveau, A., Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: A widespread ability under controls?. FEMS Microbiol. Ecol. 94 (2018), 1–14, 10.1093/femsec/fiy093.
Kjeldgaard, B., Listian, S.A., Ramaswamhi, V., Richter, A., Kiesewalter, H.T., Kovács, Á.T., Fungal hyphae colonization by Bacillus subtilis relies on biofilm matrix components. Biofilm, 1, 2019, 100007, 10.1016/j.bioflm.2019.100007.
Andrade, G., Mihara, K.L., Linderman, R.G., Bethlenfalvay, G.J., Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192 (1997), 71–79, 10.1023/A:1004249629643.
Battini, F., Cristani, C., Giovannetti, M., Agnolucci, M., Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol. Res. 183 (2016), 68–79, 10.1016/j.micres.2015.11.012.
Lecomte, J., St-Arnaud, M., Hijri, M., Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiol. Lett. 317 (2011), 43–51, 10.1111/J.1574-6968.2011.02209.X.
Agnolucci, M., Battini, F., Cristani, C., Giovannetti, M., Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol. Fertil. Soils 51 (2015), 379–389, 10.1007/s00374-014-0989-5.
Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., Kjelleberg, S., Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14 (2016), 563–575, 10.1038/nrmicro.2016.94.
Molina-Santiago, C., Pearson, J.R., Navarro, Y., Berlanga-Clavero, M.V., Caraballo-Rodriguez, A.M., Petras, D., García-Martín, M.L., Lamon, G., Haberstein, B., Cazorla, F.M., et al. The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat. Commun., 10, 2019, 1919, 10.1038/s41467-019-09944-x.
Kohlmeier, S., Smits, T.H.M., Ford, R.M., Keel, C., Harms, H., Wick, L.Y., Taking the fungal highway: Mobilization of pollutant-degrading bacteria by fungi. Environ. Sci. Technol. 39 (2005), 4640–4646, 10.1021/es047979z.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 (2012), 676–682, 10.1038/nmeth.2019.
Tinevez, J.Y., Perry, N., Schindelin, J., Hoopes, G.M., Reynolds, G.D., Laplantine, E., Bednarek, S.Y., Shorte, S.L., Eliceiri, K.W., TrackMate: An open and extensible platform for single-particle tracking. Methods 115 (2017), 80–90, 10.1016/j.ymeth.2016.09.016.
Declerck, S., Strullu, D.G., Plenchette, C., Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90 (1998), 579–585, 10.1080/00275514.1998.12026946.
Jarmer, H., Berka, R., Knudsen, S., Saxild, H.H., Transcriptome analysis documents induced competence of Bacillus subtilis during nitrogen limiting conditions. FEMS Microbiol. Lett. 206 (2002), 197–200, 10.1111/j.1574-6968.2002.tb11009.x.
Calonne, M., Fontaine, J., Tisserant, B., Dupré de Boulois, H., Grandmougin-Ferjani, A., Declerck, S., Lounès-Hadj Sahraoui, A., Polyaromatic hydrocarbons impair phosphorus transport by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Chemosphere 104 (2014), 97–104, 10.1016/J.CHEMOSPHERE.2013.10.070.
Garcés-Ruiz, M., Calonne-Salmon, M., Plouznikoff, K., Misson, C., Navarrete-Mier, M., Cranenbrouck, S., Declerck, S., Dynamics of short-term phosphorus uptake by intact mycorrhizal and non-mycorrhizal maize plants grown in a circulatory semi-hydroponic cultivation system. Front. Plant Sci., 8, 2017, 1471, 10.3389/fpls.2017.01471.