atmosphere; mars; model simulations; nightglow; nitric oxide; oxygen; Geophysics; Geochemistry and Petrology; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] The Mars NO and the O2 nightglow are produced by the recombination of atoms produced on the dayside by photodissociation and transported to the nightside. These emissions are tracers of the summer to winter pole dynamics in the upper Mars atmosphere. The UV-visible (UVIS) channel of the Nadir and Occultation for MArs Discovery (NOMAD) spectrometer onboard Trace Gas Orbiter (TGO) is the first instrument able to simultaneously monitor both nightglow emissions. Observations by NOMAD/UVIS during the first part of the Martian year show that both the NO and O2 nightglow emissions are enhanced near the southern winter pole. Their mean brightnesses are 15 and 108 kR, respectively. These nightglow emissions generally occur between 30 and 60 km, the NO emitting layer being consistently located ∼10 km higher than the O2 nightglow layer. Numerical simulations with the Mars Planetary Climate Model (MPCM, v6.1) properly reproduce the nightglow brightness but tend to overestimate the NO peak altitude by ∼10 km. These results suggest that the atomic oxygen density is correctly predicted by the model but that the nitrogen density altitude distribution might not be properly modeled.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Soret, Lauriane ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
González-Galindo, F. ; Instituto de Astrofísica de Andalucía—CSIC, Granada, Spain
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Thomas, I.R. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Ristic, B. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Willame, Y.; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Vandaele, A.C. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Lefèvre, F. ; LATMOS, Paris, France
Daerden, F. ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Patel, M.R. ; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Language :
English
Title :
Ultraviolet NO and Visible O2 Nightglow in the Mars Southern Winter Polar Region: Statistical Study and Model Comparison
BELSPO - Belgian Federal Science Policy Office UKSA - UK Space Agency F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
The NOMAD experiment was led by the Royal Belgian Institute for Space Aeronomy (IASB\u2010BIRA) with co\u2010PI teams from Spain (IAA\u2010CSIC), Italy (INAF\u2010IAPS) and the United Kingdom (Open University). This project acknowledges funding by: the Belgian Science Policy Office (BELSPO) with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493, 4000140753, 4000140863); by the Spanish Ministry of Science and Innovation (MCIU) and European funds (Grants PGC2018\u2010101836\u2010B\u2010I00 and ESP2017\u201087143\u2010R; MINECO/FEDER), from the Severo Ochoa (CEX2021\u2010001131\u2010S) and from MCIN/AEI/10.13039/501100011033 (Grants PID2022\u2010137579NB\u2010I00, RTI2018\u2010100920\u2010J\u2010I00 and PID2022\u2010141216NB\u2010I00); by the UK Space Agency (Grants ST/V002295/1, ST/V005332/1, ST/X006549/1, ST/Y000234/1 and ST/R003025/1); and by the Italian Space Agency (Grant 2018\u20102\u2010HH.0). This work was supported by the Belgian Fonds de la Recherche Scientifique\u2013FNRS (Grant 30442502; ET_HOME). L. S. and B. H. are supported by the Belgian Fund for Scientific Research (FNRS). We thank the ESA TGO team and its project scientists H. Svedhem and C. Wilson for supporting these observations.The NOMAD experiment was led by the Royal Belgian Institute for Space Aeronomy (IASB-BIRA) with co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS) and the United Kingdom (Open University). This project acknowledges funding by: the Belgian Science Policy Office (BELSPO) with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493, 4000140753, 4000140863); by the Spanish Ministry of Science and Innovation (MCIU) and European funds (Grants PGC2018-101836-B-I00 and ESP2017-87143-R; MINECO/FEDER), from the Severo Ochoa (CEX2021-001131-S) and from MCIN/AEI/10.13039/501100011033 (Grants PID2022-137579NB-I00, RTI2018-100920-J-I00 and PID2022-141216NB-I00); by the UK Space Agency (Grants ST/V002295/1, ST/V005332/1, ST/X006549/1, ST/Y000234/1 and ST/R003025/1); and by the Italian Space Agency (Grant 2018-2-HH.0). This work was supported by the Belgian Fonds de la Recherche Scientifique\u2013FNRS (Grant 30442502; ET_HOME). L. S. and B. H. are supported by the Belgian Fund for Scientific Research (FNRS). We thank the ESA TGO team and its project scientists H. Svedhem and C. Wilson for supporting these observations.
Soret, L., González‐Galindo, F., Gérard, J.‐C., Thomas, I., Ristic, B., Willame, Y., et al. (2024). Dataset for paper: “Ultraviolet NO and visible O2
nightglow in the Mars southern winter polar region: Statistical study and model comparison [Dataset]. ULiège Open Data Repository.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bertaux, J. L., Gondet, B., Lefèvre, F., Bibring, J. P., & Montmessin, F. (2012). First detection of O2 1.27 μm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions. Journal of Geophysical Research, 117(E11). https://doi.org/10.1029/2011je003890
Bertaux, J. L., Leblanc, F., Perrier, S., Quemerais, E., Korablev, O., Dimarellis, E., et al. (2005). Nightglow in the upper atmosphere of Mars and implications for atmospheric transport. Science, 307(5709), 566–569. https://doi.org/10.1126/science.1106957
Bougher, S. W., & Borucki, W. J. (1994). Venus O2 visible and IR nightglow: Implications for lower thermosphere dynamics and chemistry. Journal of Geophysical Research, 99(E2), 3759–3776. https://doi.org/10.1029/93je03431
Bougher, S. W., Gérard, J. C., Stewart, A. I. F., & Fesen, C. G. (1990). The Venus nitric oxide night airglow: Model calculations based on the Venus thermospheric general circulation model. Journal of Geophysical Research, 95(A5), 6271–6284. https://doi.org/10.1029/JA095iA05p06271
Brecht, A. S., Bougher, S. W., Shields, D., Liu, H.-L., & Lee, C. (2021). Planetary-scale wave impacts on the Venusian upper mesosphere and lower thermosphere. Journal of Geophysical Research: Planets, 126(1), e2020JE006587. https://doi.org/10.1029/2020JE006587
Chaufray, J.-Y., Gonzalez-Galindo, F., Leblanc, F., Modolo, R., Vals, M., Montmessin, F., et al. (2024). Simulations of the hydrogen and deuterium thermal and non-thermal escape at Mars at Spring Equinox. Icarus, 418, 116152. https://doi.org/10.1016/j.icarus.2024.116152
Clancy, R. T., Sandor, B. J., Wolff, M. J., Smith, M. D., Lefèvre, F., Madeleine, J. B., et al. (2012). Extensive MRO CRISM observations of 1.27 μm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations. Journal of Geophysical Research, 117(E11). https://doi.org/10.1029/2011je004018
Collet, A., Cox, C., & Gérard, J.-C. (2010). Two-dimensional time-dependent model of the transport of minor species in the Venus night side upper atmosphere. Planetary and Space Science, 58(14–15), 1857–1867. https://doi.org/10.1016/j.pss.2010.08.016
Cox, C., Saglam, A., Gérard, J. C., Bertaux, J. L., González-Galindo, F., Leblanc, F., & Reberac, A. (2008). Distribution of the ultraviolet nitric oxide Martian night airglow: Observations from Mars Express and comparisons with a one-dimensional model. Journal of Geophysical Research, 113(E8). https://doi.org/10.1029/2007je003037
Fedorova, A. A., Lefèvre, F., Guslyakova, S., Korablev, O., Bertaux, J. L., Montmessin, F., et al. (2012). The O2 nightglow in the Martian atmosphere by SPICAM Onboard of Mars-Express. Icarus, 219(2), 596–608. https://doi.org/10.1016/j.icarus.2012.03.031
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. (1999). Improved general circulation models of the Martianatmosphere from the surface to above 80 km. Journal of Geophysical Research, 104(E10), 24155–24175. https://doi.org/10.1029/1999je001025
Gagné, M. È., Bertaux, J. L., González-Galindo, F., Melo, S. M., Montmessin, F., & Strong, K. (2013). New Nitric Oxide (NO) nightglow measurements with SPICAM/MEx as a tracer of Mars upper atmosphere circulation and comparison with LMD-MGCM model prediction: Evidence for asymmetric hemispheres. Journal of Geophysical Research: Planets, 118(10), 2172–2179. https://doi.org/10.1002/jgre.20165
Gagné, M. È., Melo, S. M., Lefevre, F., González-Galindo, F., & Strong, K. (2012). Modeled O2 airglow distributions in the Martian atmosphere. Journal of Geophysical Research, 117(E6). https://doi.org/10.1029/2011je003901
García Muñoz, A., Mills, F. P., Slanger, T. G., Piccioni, G., & Drossart, P. (2009). Visible and near-infrared nightglow of molecular oxygen in the atmosphere of Venus. Journal of Geophysical Research, 114(E12). https://doi.org/10.1029/2009je003447
Gérard, J. C., Bougher, S. W., López-Valverde, M. A., Pätzold, M., Drossart, P., & Piccioni, G. (2017). Aeronomy of the Venus upper atmosphere. Space Science Reviews, 212(3–4), 1617–1683. https://doi.org/10.1007/s11214-017-0422-0
Gérard, J.-C., Cox, C., Soret, L., Saglam, A., Piccioni, G., Bertaux, J.-L., & Drossart, P. (2009). Concurrent observations of the ultraviolet nitric oxide and infrared O2 nightglow emissions with Venus Express. Journal of Geophysical Research, 114(E9), E00B44. https://doi.org/10.1029/2009JE003371
Gérard, J. C., Soret, L., Migliorini, A., & Piccioni, G. (2013). Oxygen nightglow emissions of Venus: Vertical distribution and collisional quenching. Icarus, 223(1), 602–608. https://doi.org/10.1016/j.icarus.2012.11.019
Gérard, J. C., Soret, L., Thomas, I. R., Ristic, B., Willame, Y., Depiesse, C., et al. (2024). Observation of the Mars O2 visible nightglow by the NOMAD spectrometer onboard the trace gas orbiter. Nature Astronomy, 8(1), 77–81. https://doi.org/10.1038/s41550-023-02104-8
Gkouvelis, L., Gérard, J.-C., Ritter, B., Hubert, B., Schneider, N. M., & Jain, S. K. (2018). The O(1S) 297.2-nm dayglow emission: A tracer of CO2 density variations in the Martian lower thermosphere. Journal of Geophysical Research: Planets, 123(12), 3119–3132. https://doi.org/10.1029/2018JE005709
Gkouvelis, L., Gérard, J.-C., Ritter, B., Hubert, B., Schneider, N. M., & Jain, S. K. (2020). Airglow remote sensing of the seasonal variation of the Martian upper atmosphere: MAVEN limb observations and model comparison. Icarus, 341, 113666. https://doi.org/10.1016/j.icarus.2020.113666
González-Galindo, F., Chaufray, J.-Y., López-Valverde, M. A., Gilli, G., Forget, F., Leblanc, F., et al. (2013). Three-dimensional martianionosphere model: I. The photochemical ionosphere below 180 km. Journal of Geophysical Research: Planets, 118(10), 2105–2123. https://doi.org/10.1002/jgre.20150
González-Galindo, F., Forget, F., López-Valverde, M. A., Angelats i Coll, M., & Millour, E. (2009). A ground-to-exosphere Martian generalcirculation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research, 114(E4), E04001. https://doi.org/10.1029/2008JE003246
González-Galindo, F., López-Valverde, M. A., Forget, F., García-Comas, M., Millour, E., & Montabone, L. (2015). Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. Journal of Geophysical Research: Planets, 120(11), 2020–2035. https://doi.org/10.1002/2015JE004925
Krasnopolsky, V. A. (1983). Venus spectroscopy in the 3000–8000 Å region by Veneras 9 and 10, in Venus, (Ed.), D. M. Hunten, et al., The University of Arizona Press, pp. 459–483.
Krasnopolsky, V. A. (2011). Excitation of oxygen nightglow on the terrestrial planets. Planetary and Space Science, 59(8), 754–766. https://doi.org/10.1016/j.pss.2011.02.015
Lefèvre, F., Lebonnois, S., Montmessin, F., & Forget, F. (2004). Three-dimensional modeling of ozone on Mars. Journal of Geophysical Research, 109(E7), E07004. https://doi.org/10.1029/2004JE002268
Lefèvre, F., Trokhimovskiy, A., Fedorova, A., Baggio, L., Lacombe, G., Määttänen, A., et al. (2021). Relationship between the ozone and water Vapor columns on Mars as observed by SPICAM and calculated by a global climate model. Journal of Geophysical Research: Planets, 126(4), e2021JE006838. https://doi.org/10.1029/2021JE006838
Liu, J., Millour, E., Forget, F., Gilli, G., Lott, F., Bardet, D., et al. (2023). A surface to exosphere non-orographic gravity wave parameterization for the Mars Planetary Climate Model. Journal of Geophysical Research: Planets, 128(7), e2023JE007769. https://doi.org/10.1029/2023JE007769
Millour, E., Forget, F., Spiga, A., Pierron, T., Bierjon, A., Montabone, L., et al. (2022). The Mars climate database (version 6.1). In Europlanet Science Congress 2022, Granada, Spain (p. EPSC2022-786). https://doi.org/10.5194/epsc2022-786
Millour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Montabone, L., et al. (2018). The Mars climate database (version 5.3). ESAC.
Navarro, T., Madeleine, J. B., Forget, F., Spiga, A., Millour, E., Montmessin, F., & Määttänen, A. (2014). Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. Journal of Geophysical Research: Planets, 119(7), 1479–1495. https://doi.org/10.1002/2013JE004550
Patel, M. R., Antoine, P., Mason, J., Leese, M., Hathi, B., Stevens, A. H., et al. (2017). NOMAD spectrometer on the ExoMars trace gas orbiter mission: Part 2—Design, manufacturing, and testing of the ultraviolet and visible channel. Applied Optics, 56(10), 2771–2782. https://doi.org/10.1364/AO.56.002771
Schneider, N. M., Milby, Z., Jain, S. K., González-Galindo, F., Royer, E., Gérard, J. C., et al. (2020). Imaging of Martian circulation patterns and atmospheric tides through MAVEN/IUVS nightglow observations. Journal of Geophysical Research: Space Physics, 125(8), e2019JA027318. https://doi.org/10.1029/2019ja027318
Smith, G. P., & Robertson, R. (2008). Temperature dependence of oxygen atom recombination in nitrogen after ozone photolysis. Chemical Physics Letters, 458(1–3), 6–10. https://doi.org/10.1016/j.cplett.2008.04.074
Soret, L., González-Galindo, F., Gérard, J.-C., Thomas, I., Ristic, B., Willame, Y., et al. (2024). Dataset for paper: “Ultraviolet NO and visible O2 nightglow in the Mars southern winter polar region: Statistical study and model comparison [Dataset]. ULiège Open Data Repository. https://doi.org/10.58119/ULG/U19BNE
Soret, L., Gérard, J. C., Montmessin, F., Piccioni, G., Drossart, P., & Bertaux, J. L. (2012). Atomic oxygen on the Venus nihtside: Global distribution deduced from airglow mapping. Icarus, 217(2), 849–855. https://doi.org/10.1016/j.icarus.2011.03.034
Stewart, A. I. F., Gérard, J. C., Rusch, D. W., & Bougher, S. W. (1980). Morphology of the Venus ultraviolet night airglow. Journal of Geophysical Research, 85(A13), 7861–7870. https://doi.org/10.1029/ja085ia13p07861
Stiepen, A., Gérard, J.-C., Dumont, M., Cox, C., & Bertaux, J.-L. (2013). Venus nitric oxide nightglow mapping from SPICAV nadir observations. Icarus, 226(1), 428–436. https://doi.org/10.1016/j.icarus.2013.05.031
Stiepen, A., Gérard, J. C., Gagné, M. È., Montmessin, F., & Bertaux, J. L. (2015). Ten years of Martian nitric oxide nightglow observations. Geophysical Research Letters, 42(3), 720–725. https://doi.org/10.1002/2014gl062300
Stiepen, A., Jain, S. K., Schneider, N. M., Deighan, J. I., González-Galindo, F., Gérard, J. C., et al. (2017). Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMD-MGCM predictions. Journal of Geophysical Research: Space Physics, 122(5), 5782–5797. https://doi.org/10.1002/2016JA023523
Vandaele, A. C., López-Moreno, J.-J., Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., et al. (2018). NOMAD, an integrated suite of spectrometers for the ExoMars Trace Gas Mission: Technical description, science objectives, and expected performance. Space Science Reviews, 214(5), 80. https://doi.org/10.1007/s11214-018-0517-2
Vandaele, A. C., Neefs, E., Drummond, R., Thomas, I. R., Daerden, F., López-Moreno, J. J., et al. (2018). Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planetary and Space Science, 119, 233–249. https://doi.org/10.1016/j.pss.2015.10.003
Willame, Y., Depiesse, C., Mason, J. P., Thomas, I. R., Patel, M. R., Hathi, B., et al. (2022). Calibration of the NOMAD-UVIS data. Planetary and Space Science, 218, 105504. https://doi.org/10.1016/j.pss.2022.105504
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.