[en] We present a novel and computationally efficient subglacial hydrological model that represents in a simplified way both hard- and soft-bed rheologies, as well as an automatic switch between efficient and inefficient subglacial discharge, designed for the Antarctic Ice Sheet. The subglacial model is dynamically linked to a regularized Coulomb friction law, allowing for a coupled evolution of the ice sheet on decadal to centennial timescales. It does not explicitly simulate the details of water conduits at the local scale and assumes that subglacial hydrology is in quasi-static equilibrium with the ice sheet, which makes the computations very fast. The hydrological model is tested on an idealized marine ice sheet and subsequently applied to the drainage basin of Thwaites Glacier, West Antarctica, that is composed of a heterogeneous (hard/soft) bed. We find that accounting for subglacial hydrology in the sliding law accelerates the grounding-line retreat of Thwaites Glacier under present-day climatic conditions. Highest retreat rates are obtained for hard-bed configurations and/or inefficient drainage systems. We show that the sensitivity is particularly driven by large gradients in effective pressure, more so than the value of effective pressure itself, in the vicinity of the grounding line. Therefore, we advocate for a better understanding of the subglacial system with respect to both the spatial and temporal variability in effective pressure and the rheological conditions/properties of the bed.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Kazmierczak, Elise ✱; ULB - Université Libre de Bruxelles > Département Géosciences, Environnement et Société > Laboratoire de Glaciologie
Gregov, Thomas ✱; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
Coulon, Violaine; ULB - Université Libre de Bruxelles > Département Géosciences, Environnement et Société > Laboratoire de Glaciologie
Pattyn, Frank; ULB - Université Libre de Bruxelles > Département Géosciences, Environnement et Société > Laboratoire de Glaciologie
✱ These authors have contributed equally to this work.
Language :
English
Title :
A fast and simplified subglacial hydrological model for the Antarctic Ice Sheet and outlet glaciers
Publication date :
16 December 2024
Journal title :
The Cryosphere
ISSN :
1994-0416
eISSN :
1994-0424
Publisher :
Copernicus GmbH
Volume :
18
Issue :
12
Pages :
5887-5911
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique EU - European Union
Aitken, A. R. A., Li, L., Kulessa, B., Schroeder, D., Jordan, T. A., Whittaker, J. M., Anandakrishnan, S., Dawson, E. J., Wiens, D. A., Eisen, O., and Siegert, M. J.: Antarctic Sedimentary Basins and Their Influence on Ice-Sheet Dynamics, Rev. Geophys., 61, e2021RG000767, https://doi.org/10.1029/2021rg000767, 2023.
Alley, R., Blankenship, D., Rooney, S., and Bentley, C.: Waterpressure Coupling of Sliding and Bed Deformation: III. Application to Ice Stream B, Antarctica, J. Glaciol., 35, 130-139, https://doi.org/10.3189/002214389793701572, 1989.
Alley, R. B., Holschuh, N., Parizek, B., Zoet, L. K., Riverman, K., Muto, A., Christianson, K., Clyne, E., Anandakrishnan, S., and Stevens, N. T.: GHOSTly flute music: drumlins, moats and the bed of Thwaites Glacier, Ann. Glaciol., 63, 153-157, https://doi.org/10.1017/aog.2023.43, 2022.
Arnold, N. and Sharp, M.: Flow variability in the Scandinavian ice sheet: modelling the coupling between ice sheet flow and hydrology, Quaternary Sci. Rev., 21, 485-502, https://doi.org/10.1016/s0277-3791(01)00059-2, 2002.
Beaud, F., Aati, S., Delaney, I., Adhikari, S., and Avouac, J.-P.: Surge dynamics of Shisper Glacier revealed by time-series correlation of optical satellite images and their utility to substantiate a generalized sliding law, The Cryosphere, 16, 3123-3148, https://doi.org/10.5194/tc-16-3123-2022, 2022.
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic surface hydrology and impacts on icesheet mass balance, Nat. Clim. Change, 8, 1044-1052, https://doi.org/10.1038/s41558-018-0326-3, 2018.
Beyer, S., Kleiner, T., Aizinger, V., Rückamp, M., and Humbert, A.: A confined-unconfined aquifer model for subglacial hydrology and its application to the Northeast Greenland Ice Stream, The Cryosphere, 12, 3931-3947, https://doi.org/10.5194/tc-12-3931-2018, 2018.
Bradley, A. T. and Hewitt, I. J.: Tipping point in icesheet grounding-zone melting due to ocean water intrusion, Nat. Geosci., 17, 631-637, https://doi.org/10.1038/s41561-024-01465-7, 2024.
Brondex, J., Gagliardini, O., Gillet-Chaulet, F., and Durand, G.: Sensitivity of grounding line dynamics to the choice of the friction law, J. Glaciol., 63, 854-866, https://doi.org/10.1017/jog.2017.51, 2017.
Brondex, J., Gillet-Chaulet, F., and Gagliardini, O.: Sensitivity of centennial mass loss projections of the Amundsen basin to the friction law, The Cryosphere, 13, 177-195, https://doi.org/10.5194/tc-13-177-2019, 2019.
Budd, W. F. and Jenssen, D.: Numerical Modelling of the Large-Scale Basal Water Flux under the West Antarctic Ice Sheet, Springer Netherlands, https://doi.org/10.1007/978-94-009-3745-1_16, p. 293-320, 1987.
Budd, W. F., Keage, P. L., and Blundy, N. A.: Empirical Studies of Ice Sliding, J. Glaciol., 23, 157-170, https://doi.org/10.3189/s0022143000029804, 1979.
Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6, Geosci. Model Dev., 8, 1613-1635, https://doi.org/10.5194/gmd-8-1613-2015, 2015.
Bulthuis, K., Arnst, M., Sun, S., and Pattyn, F.: Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change, The Cryosphere, 13, 1349-1380, https://doi.org/10.5194/tc-13-1349-2019, 2019.
Clarke, G. K. C.: Lumped-element analysis of subglacial hydraulic circuits, J. Geophys. Res.-Sol. Ea., 101, 17547-17559, https://doi.org/10.1029/96jb01508, 1996.
Clarke, G. K. C.: Subglacial Processes, Annu. Rev. Earth Pl. Sc., 33, 247-276, https://doi.org/10.1146/annurev.earth.33.092203.122621, 2005.
Coulon, V., Klose, A. K., Kittel, C., Edwards, T., Turner, F., Winkelmann, R., and Pattyn, F.: Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model, The Cryosphere, 18, 653-681, https://doi.org/10.5194/tc-18-653-2024, 2024.
Creyts, T. T. and Schoof, C. G.: Drainage through subglacial water sheets, J. Geophys. Res.-Earth, 114, F4, https://doi.org/10.1029/2008jf001215, 2009.
Cuffey, K. and Paterson, W. S. B.: The Physics of Glaciers, 4th edn, Elsevier, New York, ISBN 978-0-12-369461-4, 2010.
Dow, C. F.: Hidden rivers under Antarctica impact ice flow and stability, Nat. Geosci., 15, 869-870, https://doi.org/10.1038/s41561-022-01060-8, 2022a.
Dow, C. F.: The role of subglacial hydrology in Antarctic ice sheet dynamics and stability: a modelling perspective, Ann. Glaciol., 63, 49-54, https://doi.org/10.1017/aog.2023.9, 2022b. Dow, C. F., Ross, N., Jeofry, H., Siu, K., and Siegert, M. J.: Antarctic basal environment shaped by high-pressure flow through a subglacial river system, Nat. Geosci., 15, 892-898, https://doi.org/10.1038/s41561-022-01059-1, 2022.
Drews, R., Pattyn, F., Hewitt, I. J., Ng, F. S. L., Berger, S., Matsuoka, K., Helm, V., Bergeot, N., Favier, L., and Neckel, N.: Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line, Nat. Commun., 8, 1, https://doi.org/10.1038/ncomms15228, 2017.
Fowler, A. C.: A sliding law for glaciers of constant viscosity in the presence of subglacial cavitation, P. Roy. Soc. Lond. A Math., 407, 147-170, https://doi.org/10.1098/rspa.1986.0090, 1986.
Fowler, A. C.: Sliding with Cavity Formation, J. Glaciol., 33, 255-267, https://doi.org/10.3189/s0022143000008820, 1987.
Gagliardini, O. and Werder, M. A.: Influence of increasing surface melt over decadal timescales on land-terminating Greenland-type outlet glaciers, J. Glaciol., 64, 700-710, https://doi.org/10.1017/jog.2018.59, 2018.
Glen, J. W.: The Creep of Polycrystalline Ice, P. Roy. Soc. Lond. A Math., 228, 519-538, https://doi.org/10.1098/rspa.1955.0066, 1955.
Goeller, S., Thoma, M., Grosfeld, K., and Miller, H.: A balanced water layer concept for subglacial hydrology in largescale ice sheet models, The Cryosphere, 7, 1095-1106, https://doi.org/10.5194/tc-7-1095-2013, 2013.
Gowan, E. J., Hinck, S., Niu, L., Clason, C., and Lohmann, G.: The impact of spatially varying ice sheet basal conditions on sliding at glacial time scales, J. Glaciol., 69, 1056-1070, https://doi.org/10.1017/jog.2022.125, 2023.
Gregov, T., Pattyn, F., and Arnst, M.: Grounding-line flux conditions for marine ice-sheet systems under effective-pressuredependent and hybrid friction laws, J. Fluid Mech., 975, A6, https://doi.org/10.1017/jfm.2023.760, 2023.
Hager, A. O., Hoffman, M. J., Price, S. F., and Schroeder, D. M.: Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica, The Cryosphere, 16, 3575-3599, https://doi.org/10.5194/tc-16-3575-2022, 2022.
Hewitt, I. J.: Modelling distributed and channelized subglacial drainage: the spacing of channels, J. Glaciol., 57, 302-314, https://doi.org/10.3189/002214311796405951, 2011.
Hewitt, I. J. and Creyts, T. T.: A Model for the Formation of Eskers, Geophys. Res. Lett., 46, 6673-6680, https://doi.org/10.1029/2019gl082304, 2019.
Hill, T., Flowers, G. E., Hoffman, M. J., Bingham, D., and Werder, M. A.: Improved representation of laminar and turbulent sheet flow in subglacial drainage models, J. Glaciol., 1-14, https://doi.org/10.1017/jog.2023.103, 2023.
Hoffman, M. and Price, S.: Feedbacks between coupled subglacial hydrology and glacier dynamics, J. Geophys. Res.-Earth, 119, 414-436, https://doi.org/10.1002/2013jf002943, 2014.
Hoffman, M. J., Perego, M., Price, S. F., Lipscomb, W. H., Zhang, T., Jacobsen, D., Tezaur, I., Salinger, A. G., Tuminaro, R., and Bertagna, L.: MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids, Geosci. Model Dev., 11, 3747-3780, https://doi.org/10.5194/gmd-11-3747-2018, 2018.
Hubbard, B. P., Sharp, M. J., Willis, I. C., Nielsen, M. K., and Smart, C. C.: Borehole water-level variations and the structure of the subglacial hydrological system of Haut Glacier d'Arolla, Valais, Switzerland, J. Glaciol., 41, 572-583, https://doi.org/10.3189/s0022143000034894, 1995.
Iken, A.: The Effect of the Subglacial Water Pressure on the Sliding Velocity of a Glacier in an Idealized Numerical Model, J. Glaciol., 27, 407-421, https://doi.org/10.3189/s0022143000011448, 1981.
Iken, A. and Bindschadler, R. A.: Combined measurements of Subglacial Water Pressure and Surface Velocity of Findelengletscher, Switzerland: Conclusions about Drainage System and Sliding Mechanism, J. Glaciol., 32, 101-119, https://doi.org/10.3189/s0022143000006936, 1986.
Iken, A., Echelmeyer, K., Harrison, W., and Funk, M.: Mechanisms of fast flow in Jakobshavns Isbræ, West Greenland: Part I. Measurements of temperature and water level in deep boreholes, J. Glaciol., 39, 15-25, https://doi.org/10.3189/s0022143000015689, 1993.
Iverson, N. R., Baker, R. W., Hooke, R. L., Hanson, B., and Jansson, P.: Coupling between a glacier and a soft bed: I. A relation between effective pressure and local shear stress determined from till elasticity, J. Glaciol., 45, 31-40, https://doi.org/10.3189/s0022143000003014, 1999.
Johnson, J. and Fastook, J. L.: Northern Hemisphere glaciation and its sensitivity to basal melt water, Quatern. Int., 95-96, 65-74, https://doi.org/10.1016/s1040-6182(02)00028-9, 2002.
Joughin, I., Tulaczyk, S., Bamber, J. L., Blankenship, D., Holt, J. W., Scambos, T., and Vaughan, D. G.: Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data, J. Glaciol., 55, 245-257, https://doi.org/10.3189/002214309788608705, 2009 Joughin, I., Smith, B. E., and Schoof, C. G.: Regularized Coulomb Friction Laws for Ice Sheet Sliding: Application to Pine Island Glacier, Antarctica, Geophys. Res. Lett., 46, 4764-4771, https://doi.org/10.1029/2019gl082526, 2019.
Kamb, B.: Sliding motion of glaciers: Theory and observation, Rev. Geophys., 8, 673-728, https://doi.org/10.1029/rg008i004p00673, 1970.
Kamb, B.: Glacier surge mechanism based on linked cavity configuration of the basal water conduit system, J. Geophys. Res.-Sol. Ea., 92, 9083-9100, https://doi.org/10.1029/jb092ib09p09083, 1987.
Kamb, B., Raymond, C. F., Harrison, W. D., Engelhardt, H., Echelmeyer, K. A., Humphrey, N., Brugman, M. M., and Pfeffer, T.: Glacier Surge Mechanism: 1982-1983 Surge of Variegated Glacier, Alaska, Science, 227, 469-479, https://doi.org/10.1126/science.227.4686.469, 1985.
Kazmierczak, E., Sun, S., Coulon, V., and Pattyn, F.: Subglacial hydrology modulates basal sliding response of the Antarctic ice sheet to climate forcing, The Cryosphere, 16, 4537-4552, https://doi.org/10.5194/tc-16-4537-2022, 2022.
Kazmierczak, E., Gregov, T., Coulon, V., and Pattyn, F.: A fast and simplified subglacial hydrological model for the Antarctic Ice Sheet and outlet glaciers, Zenodo [code and data set], https://doi.org/10.5281/zenodo.13895589, 2024.
Koellner, S., Parizek, B. R., Alley, R. B., Muto, A., and Holschuh, N.: The impact of spatially-variable basal properties on outlet glacier flow, Earth Pl. Sc. Lett., 515, 200-208, https://doi.org/10.1016/j.epsl.2019.03.026, 2019.
Kyrke-Smith, T. M. and Fowler, A. C.: Subglacial swamps, P. Roy. Soc. A-Math. Phy., 470, 20140340, https://doi.org/10.1098/rspa.2014.0340, 2014.
Kyrke-Smith, T. M., Katz, R. F., and Fowler, A. C.: Subglacial hydrology and the formation of ice streams, P. Roy. Soc. A-Math. Phy., 470, 20130494, https://doi.org/10.1098/rspa.2013.0494, 2014.
Lappegard, G., Kohler, J., Jackson, M., and Hagen, J. O.: Characteristics of subglacial drainage systems deduced from load-cell measurements, J. Glaciol., 52, 137-148, https://doi.org/10.3189/172756506781828908, 2006.
Le Brocq, A., Payne, A., Siegert, M., and Alley, R.: A subglacial water-flow model for West Antarctica, J. Glaciol., 55, 879-888, https://doi.org/10.3189/002214309790152564, 2009.
Li, L., Aitken, A. R. A., Lindsay, M. D., and Kulessa, B.: Sedimentary basins reduce stability of Antarctic ice streams through groundwater feedbacks, Nat. Geosci., 15, 645-650, https://doi.org/10.1038/s41561-022-00992-5, 2022.
Livingstone, S. J., Clark, C. D., Woodward, J., and Kingslake, J.: Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets, The Cryosphere, 7, 1721-1740, https://doi.org/10.5194/tc-7-1721-2013, 2013.
Lliboutry, L.: General Theory of Subglacial Cavitation and Sliding of Temperate Glaciers, J. Glaciol., 7, 21-58, https://doi.org/10.3189/s0022143000020396, 1968.
Lliboutry, L.: A critical review of analytical approximate solutions for steady state velocities and temperatures in cold ice-sheets, Zeitschrift für Gletscherkunde und Glazialgeologie, 35, 135-148, 1979.
Lu, G. and Kingslake, J.: Coupling between ice flow and subglacial hydrology enhances marine ice-sheet retreat, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2794, 2023.
McArthur, K., McCormack, F. S., and Dow, C. F.: Basal conditions of Denman Glacier from glacier hydrology and ice dynamics modeling, The Cryosphere, 17, 4705-4727, https://doi.org/10.5194/tc-17-4705-2023, 2023.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M. R. v. d., Ommen, T. D. v., Wessem, M. v., and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132-137, https://doi.org/10.1038/s41561-019-0510-8, 2019.
Muto, A., Alley, R. B., Parizek, B. R., and Anandakrishnan, S.: Bed-type variability and till (dis)continuity beneath Thwaites Glacier, West Antarctica, Ann. Glaciol., 60, 82-90, https://doi.org/10.1017/aog.2019.32, 2019.
Ng, F. S. L.: Canals under sediment-based ice sheets, Ann. Glaciol., 30, 146-152, https://doi.org/10.3189/172756400781820633, 2000.
Nye, J. F.: The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment, P. Roy. Soc. Lond. A Math., 219, 477-489, https://doi.org/10.1098/rspa.1953.0161, 1953.
Parizek, B. R., Christianson, K., Anandakrishnan, S., Alley, R. B., Walker, R. T., Edwards, R. A., Wolfe, D. S., Bertini, G. T., Rinehart, S. K., Bindschadler, R. A., and Nowicki, S. M. J.: Dynamic (in)stability of Thwaites Glacier, West Antarctica, J. Geophys. Res.-Earth, 118, 638-655, https://doi.org/10.1002/jgrf.20044, 2013.
Paterson, W. S. B.: The Physics of Glaciers, 3rd edn., Pergamon Press, Oxford, ISBN 0-08037945 1, 1994.
Pattyn, F.: Numerical modelling of a fast-flowing outlet glacier: experiments with different basal conditions, Ann. Glaciol., 23, 237-246, https://doi.org/10.3189/s0260305500013495, 1996.
Pattyn, F.: Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model, Earth Pl. Sc. Lett., 295, 451-461, https://doi.org/10.1016/j.epsl.2010.04.025, 2010.
Pattyn, F.: Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0), The Cryosphere, 11, 1851-1878, https://doi.org/10.5194/tc-11-1851-2017, 2017.
Pattyn, F., De Brabander, S., and Huyghe, A.: Basal and thermal control mechanisms of the Ragnhild glaciers, East Antarctica, Ann. Glaciol., 40, 225-231, https://doi.org/10.3189/172756405781813672, 2005.
Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R., Goldberg, D., Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick, F. M., Payne, A. J., Pollard, D., Rybak, O., Saito, F., and Vieli, A.: Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 6, 573-588, https://doi.org/10.5194/tc-6-573-2012, 2012.
Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh, R. C., Zwinger, T., Albrecht, T., Cornford, S., Docquier, D., Fürst, J. J., Goldberg, D., Gudmundsson, G. H., Humbert, A., Hütten, M., Huybrechts, P., Jouvet, G., Kleiner, T., Larour, E., Martin, D., Morlighem, M., Payne, A. J., Pollard, D., Rückamp, M., Rybak, O., Seroussi, H., Thoma, M., and Wilkens, N.: Grounding-line migration in plan-view marine icesheet models: results of the ice2sea MISMIP3d intercomparison, J. Glaciol., 59, 410-422, https://doi.org/10.3189/2013jog12j129, 2013.
Pelle, T., Greenbaum, J. S., Dow, C. F., Jenkins, A., and Morlighem, M.: Subglacial discharge accelerates future retreat of Denman and Scott Glaciers, East Antarctica, Science Advances, 9, eadi9014, https://doi.org/10.1126/sciadv.adi9014, 2023.
Pollard, D. and DeConto, R. M.: A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica, The Cryosphere, 6, 953-971, https://doi.org/10.5194/tc-6-953-2012, 2012.
Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X., and Winkelmann, R.: Antarctic sub-shelf melt rates via PICO, The Cryosphere, 12, 1969-1985, https://doi.org/10.5194/tc-12-1969-2018, 2018.
Rignot, E., Ciracì, E., Scheuchl, B., Tolpekin, V., Wollersheim, M., and Dow, C.: Widespread seawater intrusions beneath the grounded ice of Thwaites Glacier, West Antarctica, P. Natl. Acad. Sci. USA, 121, e2404766121, https://doi.org/10.1073/pnas.2404766121, 2024.
Robel, A. A., DeGiuli, E., Schoof, C., and Tziperman, E.: Dynamics of ice stream temporal variability: Modes, scales, and hysteresis, J. Geophys. Res.-Earth, 118, 925-936, https://doi.org/10.1002/jgrf.20072, 2013.
Robel, A. A., Pegler, S. S., Catania, G., Felikson, D., and Simkins, L. M.: Ambiguous stability of glaciers at bed peaks, J. Glaciol., 68, 1177-1184, https://doi.org/10.1017/jog.2022.31, 2022a.
Robel, A. A., Wilson, E., and Seroussi, H.: Layered seawater intrusion and melt under grounded ice, The Cryosphere, 16, 451-469, https://doi.org/10.5194/tc-16-451-2022, 2022b.
Robel, A. A., Sim, S. J., Meyer, C., Siegfried, M. R., and Gustafson, C. D.: Contemporary ice sheet thinning drives subglacial groundwater exfiltration with potential feedbacks on glacier flow, Science Advances, 9, eadh3693, https://doi.org/10.1126/sciadv.adh3693, 2023.
Robin, G. de Q., Swithinbank, C., and Smith, B. M. E.: Radio echo exploration of the Antarctic ice sheet, in: Proceedings of the International Symposium on Antarctic Glaciological Exploration (ISAGE), 3-7 September 1968, Hanover, New Hampshire, International Association of Scientific Hydrology, Gentbrugge, Hanover, New Hampshire, pp. 97-115, 1968.
Röthlisberger, H.: Water Pressure in Intra- and Subglacial Channels, J. Glaciol., 11, 177-203, https://doi.org/10.3189/s0022143000022188, 1972.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res.-Earth, 112, F3, https://doi.org/10.1029/2006jf000664, 2007a.
Schoof, C.: Marine ice-sheet dynamics. Part 1. The case of rapid sliding, J. Fluid Mech., 573, 27-55, https://doi.org/10.1017/s0022112006003570, 2007b.
Schroeder, D. M., Blankenship, D. D., Young, D. A., Witus, A. E., and Anderson, J. B.: Airborne radar sounding evidence for deformable sediments and outcropping bedrock beneath Thwaites Glacier, West Antarctica, Geophys. Res. Lett., 41, 7200-7208, https://doi.org/10.1002/2014gl061645, 2014.
Seroussi, H., Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T., Brondex, J., Cornford, S., Dumas, C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Gregory, J. M., Greve, R., Hoffman, M. J., Humbert, A., Huybrechts, P., Kleiner, T., Larour, E., Leguy, G., Lipscomb, W. H., Lowry, D., Mengel, M., Morlighem, M., Pattyn, F., Payne, A. J., Pollard, D., Price, S. F., Quiquet, A., Reerink, T. J., Reese, R., Rodehacke, C. B., Schlegel, N.-J., Shepherd, A., Sun, S., Sutter, J., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., and Zhang, T.: initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6, The Cryosphere, 13, 1441-1471, https://doi.org/10.5194/tc-13-1441-2019, 2019.
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033-3070, https://doi.org/10.5194/tc-14-3033-2020, 2020.
Shapiro, N. M. and Ritzwoller, M. H.: Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica, Earth Pl. Sc. Lett., 223, 213-224, https://doi.org/10.1016/j.epsl.2004.04.011, 2004.
Shreve, R. L.: Movement of Water in Glaciers, J. Glaciol., 11, 205-214, https://doi.org/10.3189/s002214300002219x, 1972.
Smith, B. E., Fricker, H. A., Joughin, I. R., and Tulaczyk, S.: An inventory of active subglacial lakes in Antarctica detected by ICESat (2003-2008), J. Glaciol., 55, 573-595, https://doi.org/10.3189/002214309789470879, 2009.
Sommers, A., Rajaram, H., and Morlighem, M.: SHAKTI: Subglacial Hydrology and Kinetic, Transient Interactions v1.0, Geosci. Model Dev., 11, 2955-2974, https://doi.org/10.5194/gmd-11-2955-2018, 2018.
Stevens, D., Ely, J. C., Livingstone, S. J., Clark, C. D., Butcher, F. E. G., and Hewitt, I.: Effects of basal topography and icesheet surface slope in a subglacial glaciofluvial deposition model, J. Glaciol., 69, 397-409, https://doi.org/10.1017/jog.2022.71, 2022.
Storrar, R. D., Stokes, C. R., and Evans, D. J.: Morphometry and pattern of a large sample (>20, 000) of Canadian eskers and implications for subglacial drainage beneath ice sheets, Quaternary Sci. Rev., 105, 1-25, https://doi.org/10.1016/j.quascirev.2014.09.013, 2014.
Sun, S., Pattyn, F., Simon, E. G., Albrecht, T., Cornford, S., Calov, R., Dumas, C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Greve, R., Hoffman, M. J., Humbert, A., Kazmierczak, E., Kleiner, T., Leguy, G. R., Lipscomb, W. H., Martin, D., Morlighem, M., Nowicki, S., Pollard, D., Price, S., Quiquet, A., Seroussi, H., Schlemm, T., Sutter, J., van de Wal, R. S. W., Winkelmann, R., and Zhang, T.: Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP), J. Glaciol., 66, 891-904, https://doi.org/10.1017/jog.2020.67, 2020.
Tsai, V. C., Stewart, A. L., and Thompson, A. F.: Marine ice-sheet profiles and stability under Coulomb basal conditions, J. Glaciol., 61, 205-215, https://doi.org/10.3189/2015jog14j221, 2015.
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of Ice Stream B, west Antarctica: 1. Till mechanics, J. Geophys. Res.-Sol. Ea., 105, 463-481, https://doi.org/10.1029/1999jb900329, 2000a.
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of Ice Stream B, west Antarctica: 2. Undrained plastic bed model, J. Geophys. Res.-Sol. Ea., 105, 483-494, https://doi.org/10.1029/1999jb900328, 2000b.
vanWessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 -Part 2: Antarctica (1979-2016), The Cryosphere, 12, 1479-1498, https://doi.org/10.5194/tc-12-1479-2018, 2018.
Verjans, V. and Robel, A.: Accelerating Subglacial Hydrology for Ice Sheet Models With Deep Learning Methods, Geophys. Res. Lett., 51, e2023GL105281, https://doi.org/10.1029/2023gl105281, 2024.
Verjans, V., Robel, A. A., Seroussi, H., Ultee, L., and Thompson, A. F.: The Stochastic Ice-Sheet and Sea-Level System Model v1.0 (StISSM v1.0), Geosci. Model Dev., 15, 8269-8293, https://doi.org/10.5194/gmd-15-8269-2022, 2022.
Walder, J. S.: Stability of Sheet Flow of Water Beneath Temperate Glaciers and Implications for Glacier Surging, J. Glaciol., 28, 273-293, https://doi.org/10.3189/s0022143000011631, 1982.
Walder, J. S. and Fowler, A.: Channelized subglacial drainage over a deformable bed, J. Glaciol., 40, 3-15, https://doi.org/10.3189/s0022143000003750, 1994.
Weertman, J.: Stability of the Junction of an Ice Sheet and an Ice Shelf, J. Glaciol., 13, 3-11, https://doi.org/10.3189/s0022143000023327, 1974.
Weertman, J. and Birchfield, G. E.: SubglacialWater flow Under Ice Streams andWest Antarctic Ice-Sheet Stability, Ann. Glaciol., 3, 316-320, https://doi.org/10.3189/s0260305500002998, 1982.
Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E.: Modeling channelized and distributed subglacial drainage in two dimensions, J. Geophys. Res.-Earth, 118, 2140-2158, https://doi.org/10.1002/jgrf.20146, 2013.
Willis, I. C., Pope, E. L., Leysinger Vieli, G. J.-M., Arnold, N. S., and Long, S.: Drainage networks, lakes and water fluxes beneath the Antarctic ice sheet, Ann. Glaciol., 57, 96-108, https://doi.org/10.1017/aog.2016.15, 2016.
Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description, The Cryosphere, 5, 715-726, https://doi.org/10.5194/tc-5-715-2011, 2011.
Zoet, L. K. and Iverson, N. R.: A slip law for glaciers on deformable beds, Science, 368, 76-78, https://doi.org/10.1126/science.aaz1183, 2020.