[en] AbstractSuperconducting nanowires underpin the development of a variety of highly advanced quantum devices such as single‐photon detectors and quantum circuits. In 1D superconducting nanowires, topological fluctuations of the superconducting order parameter, known as phase slips, severely influence the electrical transport. In 3D systems, however, phase‐slip events are generally considered to be insignificant. Here, details on the observation of a reentrant resistive state in 3D superconducting diamond nanowires (DNWs) are reported. This exotic resistive state alters the trend of the superconducting transition with an abrupt change of the temperature and magnetic‐field coefficients of resistivity and the current coefficient of voltage. This reentrant resistive state is interpreted as being a result of quantum phase slips in the bamboo‐like DNWs consisting of multiple sequential grain‐boundary‐grain junctions. The results provide the first evidence that quantum phase slips can also play a crucial role in determining the electrical transport properties of 3D superconducting nanowires.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Zhang, Gufei ; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Harbin Institute of Technology Harbin 150080 China ; Zhengzhou Research Institute Harbin Institute of Technology Zhengzhou 450000 China
Collienne, Simon ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Zulkharnay, Ramiz ; School of Chemistry University of Bristol Bristol BS8 1TS UK
Ke, Xiaoxing ; Faculty of Materials & Manufacturing and Faculty of Information Technology Beijing University of Technology Beijing 100124 China
Liu, Liwang ; Department of Physics and Astronomy KU Leuven Heverlee B‐3001 Belgium
Li, Songyu ; Faculty of Materials & Manufacturing and Faculty of Information Technology Beijing University of Technology Beijing 100124 China
Zhang, Sen; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Harbin Institute of Technology Harbin 150080 China ; Zhengzhou Research Institute Harbin Institute of Technology Zhengzhou 450000 China
Zhang, Yongzhe; Faculty of Materials & Manufacturing and Faculty of Information Technology Beijing University of Technology Beijing 100124 China
Li, Yejun; School of Physics & Electronics and School of Materials Science & Engineering Central South University Changsha 410083 China
Mortensen, N. Asger ; POLIMA–Center for Polariton‐Driven Light‐Matter Interactions and Danish Institute for Advanced Study University of Southern Denmark Campusvej 55 Odense M DK‐5230 Denmark
Moshchalkov, Victor V. ; Department of Physics and Astronomy KU Leuven Heverlee B‐3001 Belgium
Zhu, Jiaqi; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Harbin Institute of Technology Harbin 150080 China ; Zhengzhou Research Institute Harbin Institute of Technology Zhengzhou 450000 China
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
May, Paul W. ; School of Chemistry University of Bristol Bristol BS8 1TS UK
R. Zulkharnay, P. W. May, J. Mater. Chem. A. 2023, 11, 13432.
M. Syamsul, Y. Kitabayashi, D. Matsumura, T. Saito, Y. Shintani, H. Kawarada, Appl. Phys. Lett. 2016, 109, 203504.
S. A. O. Russell, L. Cao, D. Qi, A. Tallaire, K. G. Crawford, A. T. S. Wee, D. A. J. Moran, Appl. Phys. Lett. 2013, 103, 202112.
K. G. Crawford, L. Cao, D. Qi, A. Tallaire, E. Limiti, C. Verona, A. T. S. Wee, D. A. J. Moran, Appl. Phys. Lett. 2016, 108, 042103.
M. Liao, L. Sang, T. Teraji, S. Koizumi, Y. Koide, Adv. Mater. Technol. 2019, 4, 1800325.
J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, M. D. Lukin, Nature 2008, 455, 644.
G. Zhang, T. Samuely, Z. Xu, J. K. Jochum, A. Volodin, S. Zhou, P. W. May, O. Onufriienko, J. Kacmarcik, J. A. Steele, J. Li, J. Vanacken, J. Vacík, P. Szabó, H. Yuan, M. B. J. Roeffaers, D. Cerbu, P. Samuely, J. Hofkens, V. V. Moshchalkov, ACS Nano 2017, 11, 5358.
G. Zhang, T. Samuely, N. Iwahara, J. Kačmarčík, C. Wang, P. W. May, J. K. Jochum, O. Onufriienko, P. Szabó, S. Zhou, P. Samuely, V. V. Moshchalkov, L. Chibotaru, H. Rubahn, Sci. Adv. 2020, 6, eaaz2536.
E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'nik, N. J. Curro, J. D. Thompson, S. M. Stishov, Nature 2004, 428, 542.
E. Bustarret, Phys. Stat. Sol. (a) 2008, 205, 997.
E. Bustarret, P. Achatz, B. Sacépé, C. Chapelier, C. Marcenat, L. Ortéga, T. Klein, Phys. Rev. B 2007, 75, 165313.
E. Bustarret, J. Kacmarcik, C. Marcenat, E. Gheeraert, C. Cytermann, J. Marcus, T. Klein, Phys. Rev. Lett. 2004, 93, 237005.
G. Zhang, M. Zeleznik, J. Vanacken, P. W. May, V. V. Moshchalkov, Phys. Rev. Lett. 2013, 110, 077001.
G. Zhang, S. Turner, E. A. Ekimov, J. Vanacken, M. Timmermans, T. Samuely, V. A. Sidorov, S. M. Stishov, Y. Lu, B. Deloof, B. Goderis, G. Van Tendeloo, J. Van de Vondel, V. V. Moshchalkov, Adv. Mater. 2014, 26, 2034.
G. Zhang, J. Kačmarčík, Z. Wang, R. Zulkharnay, M. Marcin, X. Ke, S. Chiriaev, V. Adashkevich, P. Szabó, Y. Li, P. Samuely, V. V. Moshchalkov, P. W. May, H.-G. Rubahn, Phys. Rev. Appl. 2019, 12, 064042.
C. D'Errico, S. Scaffidi Abbate, G. Modugno, Philos. Trans. R. Soc. A. 2017, 375, 20160425.
A. Bezryadin, C. N. Lau, M. Tinkham, Nature 2000, 404, 971.
M. Tinkham, C. N. Lau, Appl. Phys. Lett. 2002, 80, 2946.
N. Giordano, Phys. Rev. B. 1990, 41, 6350.
W. Zhao, X. Liu, M. H. W. Chan, Nano Lett. 2016, 16, 1173.
Y. Chen, S. D. Snyder, A. M. Goldman, Phys. Rev. Lett. 2009, 103, 127002.
F. Altomare, A. M. Chang, M. R. Melloch, Y. Hong, C. W. Tu, Phys. Rev. Lett. 2006, 97, 017001.
C. Delacour, B. Pannetier, J. Villegier, V. Bouchiat, Nano Lett. 2012, 12, 3501.
J. N. Voss, Y. Schön, M. Wildermuth, D. Dorer, J. H. Cole, H. Rotzinger, A. V. Ustinov, ACS Nano 2021, 15, 4108.
A. Ergül, T. Weiβl, J. Johansson, J. Lidmar, D. B. Haviland, Sci. Rep. 2017, 7, 11447.
G. Zhang, R. Zulkharnay, X. Ke, M. Liao, L. Liu, Y. Guo, Y. Li, H. Rubahn, V. V. Moshchalkov, P. W. May, Adv. Mater. 2023, 35, 2211129.
G. Zhang, T. Samuely, H. Du, Z. Xu, L. Liu, O. Onufriienko, P. W. May, J. Vanacken, P. Szabó, J. Kačmarčík, H. Yuan, P. Samuely, R. E. Dunin-Borkowski, J. Hofkens, V. V. Moshchalkov, ACS Nano 2017, 11, 11746.
P. Xiong, A. V. Herzog, R. C. Dynes, Phys. Rev. Lett. 1997, 78, 927.
A. Rogachev, T.-C. Wei, D. Pekker, A. T. Bollinger, P. M. Goldbart, A. Bezryadin, Phys. Rev. Lett. 2006, 97, 137001.
X. D. A. Baumans, D. Cerbu, O.-A. Adami, V. S. Zharinov, N. Verellen, G. Papari, J. E. Scheerder, G. Zhang, V. V. Moshchalkov, A. V. Silhanek, J. Van de Vondel, Nat. Commun. 2016, 7, 10560.
S. Michotte, S. Mátéfi-Tempfli, L. Piraux, D. Y. Vodolazov, F. M. Peeters, Phys. Rev. B. 2004, 69, 094512.
D. Y. Vodolazov, Phys. Rev. B. 2007, 75, 184517.
K. Y. Arutyunov, Phys. C. 2008, 468, 272.
D. Y. Vodolazov, F. M. Peeters, Phys. Rev. B 2012, 85, 024508.
K. Fossheim, A. Sudbø, Superconductivity: Physics and Applications, John Wiley & Sons, Hoboken, New Jersey 2004, pp. 182–183.
J. Li, M. Ji, T. Schwarz, X. Ke, G. Van Tendeloo, J. Yuan, P. Pereira, Y. Huang, G. Zhang, H. L. Feng, Y. H. Yuan, T. Hatano, R. Kleiner, D. Koelle, L. F. Chibotaru, K. Yamaura, H. B. Wang, P. H. Wu, E. Takayama-Muromachi, J. Vanacken, V. V. Moshchalkov, Nat. Commun. 2015, 6, 7614.
COMSOL AB, Stockholm, Sweden, Comsol Multiphysics v.5.4.
J. S. Langer, V. Ambegaokar, Phys. Rev. 1967, 164, 498.
D. E. McCumber, B. I. Halperin, Phys. Rev. B. 1970, 1, 1054.
N. Giodano, Physica B: Condens 1994, 203, 460.
A. Bezryadin, J. Phys.: Condens. Matter 2008, 20, 043202.
O. J. L. Fox, J. O. P. Holloway, G. M. Fuge, P. W. May, M. N. R. Ashfold, MRS Online Proceedings Library 2009, 1203, 1203.