Site climate more than soil properties and topography shape the natural arbuscular mycorrhizal symbiosis in maize and spore density within rainfed maize (Zea mays L.) cropland in the eastern DR Congo.
[en] Rhizosphere microorganisms, particularly arbuscular mycorrhizal fungi (AMF), play a vital role in enhancing sustainable maize production. However, uncertainty persist regarding the influence of climate variables and soil properties on mycorrhizal colonization (MC) of maize and the abundance of AM fungal spores in the field. This study aimed to explore the environmental factors such as site climate variables, soil physicochemical properties and topography and vegetation variable, affecting the natural MC of maize and the density of AMF spores. The study hypothesizes that natural maize mycorrhizal colonization and AMF spore density vary significantly across different sites and agroecological zones. It further posits that climatic and edaphic variables predominantly explain the observed variation in mycorrhizal parameters. To assess the impact of these factors, a field study was conducted in 32 sites across three territories in the province of South Kivu, namely Kabare, Walungu, and Uvira. Rhizospheric soil and maize roots were collected from different sites. Maize MC varied significantly among sites, with Kabare and Walungu showing high colonization rates (52.1% and 44.7%, respectively) compared to Uvira (26.40%). Meanwhile, spore density was significantly higher in Uvira (1331.7 spores g-1 soil) than in Kabare (518.9 spores g-1 soil) and Walungu (468.58 spores g-1 soil). Correlation analysis indicated that maize MC was influenced by site climate and soil properties. The PLS-SEM model demonstrated that 76.5% (R2) of the total variance in maize root MC was explained by climatic variables and soil chemical properties. Compared to soil chemical properties, climate characteristics had a more pronounced impact on maize MC. Maize MC was inversely correlated with temperature, C and available P content, while being directly and positively correlated with altitude, rainfall, and base saturation rate. Furthermore, 68.5% (R2) of the spore density variability of AMF was explained by climatic variables and soil physical properties. Spore density was inversely correlated with sand and clay content, field capacity, rainfall, and altitude, while being positively correlated with temperature. The results of this study indicate that climatic conditions exert a more pronounced influence on the mycorrhizal colonization of maize and the density of AMF spores than soil characteristics.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Ndeko, Adrien Byamungu ; Department of Crop Production, Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of the Congo ; Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal ; Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
Diedhiou, Abdala Gamby; Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal ; Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
Founoune-Mboup, Hassna; Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal ; ISRA_LNRPV, Laboratoire National de Recherches sur les Productions Végétales (LNRPV), Dakar, Senegal
Chuma Basimine, Géant ; Université de Liège - ULiège > Sphères ; Université de Liège - ULiège > Département de géographie > Service de géographie rurale (Laboratoire pour l'analyse des lieux, des paysages et des campagnes européennes LAPLEC) ; Université de Liège - ULiège > Faculté des Sciences > Form. doct. sc. (géog. - paysage) ; Université de Liège - ULiège > Faculté des Sciences > Doct. scienc. (géographie) ; UEA - Université Evangélique en Afrique
Mugumaarhahama, Yannick; Department of Crop Production, Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of the Congo ; Unit of Applied Biostatistics, Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique, Bukavu, South Kivu, Democratic Republic of Congo
Diouf, Diegane; Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal ; Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
Fall, Saliou; Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal ; ISRA_LNRPV, Laboratoire National de Recherches sur les Productions Végétales (LNRPV), Dakar, Senegal
Mushagalusa, Gustave Nachigera; Department of Crop Production, Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of the Congo
Kane, Aboubacry; Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal ; Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
Language :
English
Title :
Site climate more than soil properties and topography shape the natural arbuscular mycorrhizal symbiosis in maize and spore density within rainfed maize (Zea mays L.) cropland in the eastern DR Congo.
We are grateful to the farmers for their cooperation and valuable assistance during the collection of samples from their respective fields. The authors would like to thank the “Laboratoire Commun de Microbiologie, LCM, IRD-ISRA-UCAD, Senegal” for their support during the experimental set-up phase.
Zuma M, Kolanisi U, Modi A. The Potential of Integrating Provitamin A-Biofortified Maize in Smallholder Farming Systems to Reduce Malnourishment in South Africa. Int J Environ Res Public Health. 2018 Apr 19; 15(4):805. https://doi.org/10.3390/ijerph15040805 PMID: 29671831
IPCC. Climate Change 2014: Synthesis Report [Internet]. Intergovernmental Panel on Climate Change. 2015. 169 p. Available from: http://www.ipcc.ch
Compant S, Van Der Heijden MGA, Sessitsch A. Climate change effects on beneficial plant-microorganism interactions: Climate change and beneficial plant-microorganism interactions. FEMS Microbiol Ecol. 2010; 73(2):197–214. https://doi.org/10.1111/j.1574-6941.2010.00900.x
Várallyay G. Potential impacts of climate change on agro-ecosystems. hrcak.srce.hrG VárallyayAgriculturae Conspectus Scientificus, 2007; 2007; 72(1).
Kumar N, Kumar A, Jeena N, Singh R, Singh H. Factors Influencing Soil Ecosystem and Agricultural Productivity at Higher Altitudes. In 2020. p. 55–70. https://doi.org/10.1007/978-981-15-1902-4_4
Haase S, Neumann G, Kania A, Kuzyakov Y, Römheld V, Kandeler E. Elevation of atmospheric CO2and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem. 2007; 39(9):2208–21. https://doi.org/10.1016/j.soilbio.2007.03.014
Gavito ME, Azcon-Aguilar C. Temperature stress in arbuscular mycorhizal fungi: a test for adapatation to soil temperture in three isolates of Funneliformis mosseae from different climates. Agricultural and food science. 2012; 21:2–11. https://doi.org/10.23986/afsci.4994
Ndeko AB, Founoune-Mboup H, Kane A, Cournac L. Arbuscular Mycorrhizal Fungi Alleviate the Negative Effect of Temperature Stress in Millet Lines with Contrasting Soil Aggregation Potential. Gesunde Pflanzen. 2022 Mar 19; 74(1):53–67. https://doi.org/10.1007/s10343-021-00588-w
Morris EK, Morris DJP, Vogt S, Gleber SC, Bigalke M, Wilcke W, et al. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. ISME J. 2019 Jul 1; 13(7):1639–46. https://doi.org/10.1038/s41396-019-0369-0 PMID: 30742058
Pauwels R, Graefe J, Bitterlich M. An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way. Mycorrhiza. 2023 Jun 28; 33(3):165–79. https://doi.org/10.1007/s00572-023-01106-8 PMID: 36976365
Kuyper T, . . . XWTRS in, 2021 undefined. The interplay between roots and arbuscular mycorrhizal fungi influencing water and nutrient acquisition and use efficiency. Wiley Online LibraryTW Kuyper, X Wang, MN MuchaneThe Root Systems in Sustainable Agricultural Intensification, Wiley Online Library. 2021 Jan; 193–220. https://doi.org//doi/abs/10.1002/9781119525417
Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006 Jul; 16(5):299–363. https://doi.org/10.1007/s00572-005-0033-6 PMID: 16845554
Rincón C, Droh G, Villard L, Masclaux FG, Assanvo N, Zeze A, et al. Hierarchical spatial sampling reveals factors influencing arbuscular mycorrhizal fungus diversity in Côte d ‘Ivoire cocoa plantations. Mycorrhiza [Internet]. 2021;289–300. Available from: https://doi.org/10.1007/s00572-020-01019-w
Ndeko AB, Chuma GB, Mondo JM, Kazamwali LM, Mugumaarhahama Y, Bisimwa EB, et al. Farmers’ preferred traits, production constraints, and adoption factors of improved maize varieties under South-Kivu rainfed agro-ecologies, eastern DR Congo. 2022. https://www.researchsquare.com/article/rs1893945/latest
CAID. Rapport Ministère de l’Agriculture, RDC. 2019 [cited 2024 Jul 27]. p. 93 Évaluation de la Campagne Agricole 2018–2019.
Bagula EM, Majaliwa JGM, Mushagalusa GN, Basamba TA, Tumuhairwe JB, Mondo JGM, et al. Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo. Land (Basel). 2022 Aug 27; 11(9):1409. https://doi.org/10.3390/land11091409
Annih Grace M, Estella Achick TF, Eustace Bonghan B, Evelyn Bih M, Valery Ngo N, James Ajeck M, et al. An Overview of the Impact of Climate Change on Pathogens, Pest of Crops on Sustainable Food Biosecurity. Int J Ecotoxicol Ecobiol. 2019; 4(4):114.
Ndeko BA. Effect of Inoculation with Rhizophagus irregularis on common bean (Phaseolus vulgaris L) under phosphorus level application in South-Kivu, Eastern DRC. PLANTA TROPIKA. 2023 Sep 18; 11 (2). https://doi.org/10.18196/pt.v11i2.18495
Ndeko AB, Chuma GB, Chokola GM, Kulimushi PZ, Mushagalusa GN. Soil Properties Shape the Arbuscular Mycorrhizal Status of Common Bean (Phaseolus Vulgaris) and Soil Mycorrhizal Potential in Kabare and Walungu Territories, Eastern DR Congo. Agricultural Research. 2024 Jun 26; 13 (2):287–99. https://doi.org/10.1007/s40003-024-00701-1
Ndeko AB, Diedhiou AG, Fall S, Diouf D, Funoune-Mboup H, Mushagalusa GN, et al. Arbuscular mycorrhizal dependency and responsiveness of maize varieties from South-Kivu, eastern Democratic Republic of Congo. Cereal Res Commun. 2024 Mar 1–17; https://doi.org/10.1007/s42976-024-00508-4
Ramírez-Flores MR, Perez-Limon S, Li M, Barrales-Gamez B, Albinsky D, Paszkowski U, et al. The genetic architecture of host response reveals the importance of arbuscular mycorrhizae to maize cultivation. Elife. 2020 Nov 19; 9. e61701. https://doi.org/10.7554/eLife.61701 PMID: 33211006
Ramírez-Flores MR, Bello-Bello E, Rellán-Álvarez R, Sawers RJH, Olalde-Portugal V. Inoculation with the mycorrhizal fungus Rhizophagus irregularis modulates the relationship between root growth and nutrient content in maize (Zea mays ssp. mays L.). Plant Direct. 2019 Dec 12; 3(12). e00192. https://doi.org/10.1002/pld3.192 PMID: 31867562
Ndiate N, Saeed Q, Haider F, Liqun C, Plants JN. Co-Application of Biochar and Arbuscular mycorrhizal Fungi Improves Salinity Tolerance, Growth and Lipid Metabolism of Maize (Zea mays L.) in an Alkaline. Plant. 2021; 10(11):2490. https://doi.org/10.3390/plants10112490
Benjelloun S, El Harchli EH, Amrani JK, El Ghachtouli N, Fikri BK, El Yamani J. Etude de l’importance de la mycorhization dans la synthèse des composés phénoliques chez le maïs (Zea mays L.) en condition de stress hydrique. International Journal Of Engineering And Science. 2014; 04(12):43–9.
Bossou L dolorès R, Houngnandan HB, Adandonon A, Zoundji C, Houngnandan P. Diversité des champignons mycorhiziens arbusculaires associés à la culture du maïs (Zea mays L.) au Bénin. Int J Biol Chem Sci. 2019 Aug 23; 13(2):597–609. https://doi.org/10.4314/ijbcs.v13i2.2
Li L fei, Li T, Zhang Y, Zhao Z wei. Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. 2010; 71: 418–27. https://doi.org/10.1111/j.1574-6941.2009.00815.x
Jerbi M, Id SL, Loun A, Chaar H, Jeddi F Ben. Higher temperatures and lower annual rainfall do not restrict, directly or indirectly, the mycorrhizal colonization of barley (Hordeum vulgare L.) under rainfed conditions. 2020;1–19. https://doi.org/10.1016/j.pedobi.2021.150748
Melo CD, Walker C, Krüger C, Borges PA V, Luna S, Mendonça D, et al. Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconia azorica on native forest of Azores. 2019;1309–27. https://doi.org/10.1590/0001-3765201920180165
Heinemeyer A, Fitter AH. Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: Growth responses of the host plant and its AM fungal partner. J Exp Bot. 2004 Feb; 55(396):525–34. https://doi.org/10.1093/jxb/erh049 PMID: 14739273
Pierre S, Litton CM, Giardina CP, Sparks JP, Fahey TJ. Mean annual temperature influences local fine root proliferation and arbuscular mycorrhizal colonization in a tropical wet forest. 2020; (October 2019):1–12. https://doi.org/10.1002/ece3.6561
Lekberg Y, Koide RT. Effect of soil moisture and temperature during fallow on survival of contrasting isolates of arbuscular mycorrhizal fungi. Botany. 2008 Oct; 86(10):1117–24. https://doi.org/10.1139/ B08-077
Sun XG, Tang M. Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. South African Journal of Botany [Internet]. 2013 [cited 2018 Aug 18]; 88: 373–9. Available from: http://doi.org/10.1016/j.sajb.2013.09.007
Soudzilovskaia NA, Douma JC, Akhmetzhanova AA, van Bodegom PM, Cornwell WK, Moens EJ, et al. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecology and Biogeography. 2015 Mar 8; 24(3): 371–82. https://doi.org/10.1111/geb.12272
Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida. PLoS One. 2014 Mar 7; 9(3):e90841. https://doi.org/10.1371/journal.pone.0090841 PMID: 24608923
Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, et al. Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol. 2000 Apr; 146(1):155–61. https://doi.org/10.1046/j.14698137.2000.00615.x
Requena N., Perez-Solis E., Azcón-Aguilar C., Jeffries P., & Barea J. M. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Applied and environmental microbiology. 2001; 67(2), 495–498. https://doi.org/10.1128/AEM.67.2.495-498.2001 PMID: 11157208
Sinoga JDR, Pariente S, Diaz AR, Martinez Murillo JF. Variability of relationships between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditions (South of Spain). Catena (Amst). 2012 Jul; 94:17–25. https://doi.org/10.1016/j.catena.2011.06.004
Malembaka RB, Onwonga R, Jefwa J, Ayuke F, Nabahungu L. Diversity and distribution of arbuscular mycorrhizal fungi in maize (Zea mays) cropping fields in South Kivu, Democratic Republic of Congo. 2021; 17(4):604–17. https://doi.org/10.5897/AJAR2020.15390
Stevens BM, Propster JR, Öpik M, Wilson GWT, Alloway SL, Mayemba E, et al. Arbuscular mycorrhizal fungi in roots and soil respond differently to biotic and abiotic factors in the Serengeti. Mycorrhiza. 2020; 30(1), 79–95. https://doi.org/10.1007/s00572-020-00931-5 PMID: 31970495
Zhang R., Mu Y., Li X., Li S., Sang P., Wang X., et al. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Science of the Total Environment. 2020; 740, 139810. https://doi.org/10.1016/j.scitotenv.2020.139810 PMID: 32563865
Chuma GB, Mugumaarhahama Y, Mond JM, Bagula EM, Ndeko AB, Lucungu PB, et al. Gully erosion susceptibility mapping using four machine learning methods in Luzinzi watershed, eastern Democratic Republic of Congo. Physics and Chemistry of the Earth, Parts A/B/C. 2023 Feb; 129:103295. https://doi.org/10.1016/j.pce.2022.103295
Cokola M. C., Mugumaarhahama Y., Noël G., Kazamwali L. M., Bisimwa E. B., Mugisho J. Z., et al. (2021). Fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in South Kivu, DR Congo: understanding how season and environmental conditions influence field scale infestations. Neotropical Entomology, 50, 145–155. https://doi.org/10.1007/s13744-020-00833-3 PMID: 33501633
Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society. 1970; 55(1):158-IN18.
Trouvelot A, Kough JL, Gianinazzi-Pearson V. INRA Presse, Paris. 1986 [cited 2024 Jul 29]. p. 217–21 Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. In: Physiological and genetical aspects of mycorrhizae.
Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society. 1963 Jun 1; 46(2):235–44.
Daniels BA, Skipper HD. Methods for the recovery and quantitative estimation of propagules from soil. In: Methods and Principles of Mycorrhizal Research. St. Paul. American Phytopathological Society,; 1982. p. 20–45.
Li P, Liu M, Li G, Liu K, Liu T, Wu M, et al. Phosphorus availability increases pathobiome abundance and invasion of rhizosphere microbial networks by Ralstonia. Environ Microbiol. 2021 Oct 7; 23 (10):5992–6003. https://doi.org/10.1111/1462-2920.15696 PMID: 34347357
Karmakar A, Mandal P, Adhikary R, Mandal V. Assessment of Rhizospheric Arbuscular Mycorrhizae Spores in Relation to Soil Characters in the Rice Fields of Malda District, India. Russ Agric Sci. 2020 Jan 31; 46(1):48–55. https://doi.org/10.3103/S1068367420010036
Nobile CM, Bravin MN, Becquer T, Paillat JM. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere. 2020 Jan; 239:124709. https://doi.org/10.1016/j.chemosphere.2019.124709 PMID: 31499302
Bidogeza JC, Berentsen PBM, Graaff J De, Lansink AGJMO. A typology of farm households for the Umutara Province in Rwanda. 2009;321–35. https://doi.org/10.1007/s12571-009-0029-8
Ringnér Markus. What is principal components analysis? Nat Biotechnol. 2008; 26(3):3–16.
Jiang Q, Yan X, Huang B. Performance-Driven Distributed PCA Process Monitoring Based on Fault-Relevant Variable Selection and Bayesian Inference. IEEE Transactions on Industrial Electronics. 2016; 63(1):377–86. https://doi.org/10.1109/TIE.2015.2466557
Williams B, Onsman A, Brown T. Exploratory factor analysis: A five-step guide for novices Education exploratory factor analysis: A five-step guide for novices. Australasian Journal of Paramedicine. 2012; 8(3):1–13. https://doi.org/10.33151/ajp.8.3.93
Peres-Neto PR, Jackson DA, Somers KM. How many principal components? stopping rules for determining the number of non-trivial axes revisited. Comput Stat Data Anal. 2005; 49(4):974–97. https://doi.org/10.1016/j.csda.2004.06.015
Riou J, Guyon H, Falssard B. An introduction to the partial least squares approach to structural equation modelling: a method for exploratory psychiatric research. Int J Methods Psychiatr Res. 2016; 25 Suppl3(October 2015):220–31. https://doi.org/10.1002/mpr.1497 PMID: 26482420
do Valle PO, Assaker G. Using Partial Least Squares Structural Equation Modeling in Tourism Research: A Review of Past Research and Recommendations for Future Applications. J Travel Res. 2016; 55(6):695–708. https://doi.org/10.1177/0047287515569
Fan Y, Chen J, Shirkey G, John R, Wu SR, Park H, et al. Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecol Process. 2016; 5(1). https://doi.org/10.1186/ s13717-016-0063-3
Sarstedt M, Ringle CM, Hair JF. Handbook of Market Research. Handbook of Market Research. 2017.
Vanalle R. M., Ganga G. M. D., Godinho Filho M., & Lucato W. C. (2017). Green supply chain management: An investigation of pressures, practices, and performance within the Brazilian automotive supply chain. Journal of cleaner production, 151, 250–259. https://doi.org/10.1016/j.jclepro.2017.03.066
Ringle CM, Wende S, Becker JM. “SmartPLS 4.” Oststeinbek: SmartPLS GmbH. 2022;
Aguirre-Urreta MI, Rönkkö M. Statistical inference with PLSc using bootstrap confidence intervals1. MIS Q. 2018; 42(3):1001–20.
Hair JF, Ringle CM, Sarstedt M. PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice. 2011; 19(2):139–52. https://doi.org/10.1016/j.rmal.2022.100027
Wang XX, van der Werf W, Yu Y, Hoffland E, Feng G, Kuyper TW. Field performance of different maize varieties in growth cores at natural and reduced mycorrhizal colonization: yield gains and possible fertilizer savings in relation to phosphorus application. Plant Soil. 2020 May 24; 450(1–2):613–24. https://doi.org/10.1007/s11104-020-04524-1
Yadav R, Ror P, Rathore P, Ramakrishna W. Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification. Plant Physiology and Biochemistry. 2020 May 1; 150: 222–33. https://doi.org/10.1016/j.plaphy.2020.02.039 PMID: 32155450
Wang M, Wang Z, Guo M, Qu L, Biere A. Effects of arbuscular mycorrhizal fungi on plant growth and herbivore infestation depend on availability of soil water and nutrients. Front Plant Sci. 2023 Jan 26; 14. https://doi.org/10.3389/fpls.2023.1101932 PMID: 36778709
Weber SE, Bascompte J, Kahmen A, Niklaus PA. Plant choice between arbuscular mycorrhizal fungal species results in increased plant P acquisition. PLoS One. 2024 Jan 31; 19 (1):e0292811. https://doi.org/10.1371/journal.pone.0292811 PMID: 38295035
Sarah S., Burni T., Shuaib M., Alzahrani Y., Alsamadany H., Jan F., et al. (2019). Symbiotic response of three tropical maize varieties to Eco-friendly Arbuscular mycorrhizal fungal inoculation in Marginal soil. Biocell, 43(5–1), 245–252.
Fall AF, Nakabonge G, Ssekandi J, Founoune-Mboup H, Badji A, Ndiaye A, et al. Combined Effects of Indigenous Arbuscular Mycorrhizal Fungi (AMF) and NPK Fertilizer on Growth and Yields of Maize and Soil Nutrient Availability. Sustainability. 2023 Jan 25; 15(3): 2243. https://doi.org/10.3390/ su15032243
Castaño C, Bonet JA, Oliva J, Farré G, Martínez de Aragón J, Parladé J, et al. Rainfall homogenizes while fruiting increases diversity of spore deposition in Mediterranean conditions. Fungal Ecol. 2019 Oct; 41: 279–88. https://doi.org/10.1016/j.funeco.2019.07.007
Lü PP, Zheng Y, Chen L, Ji NN, Yao H, Maitra P, et al. Irrigation and fertilization effects on arbuscular mycorrhizal fungi depend on growing season in a dryland maize agroecosystem. Pedobiologia (Jena). 2020 Nov; 83:150687. https://doi.org/10.1016/j.pedobi.2020.150687
Deveautour C., Donn S., Power S. A., Bennett A. E., & Powell J. R. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities. Molecular Ecology. 2018; 27(8), 2152–2163. https://doi.org/10.1111/mec.14536 PMID: 29443420
Silvana VM, Carlos FJ, Lucía AC, Natalia A, Marta C. Colonization dynamics of arbuscular mycorrhizal fungi (AMF) in Ilex paraguariensis crops: Seasonality and influence of management practices. J King Saud Univ Sci. 2020 Jan; 32(1):183–8. https://doi.org/10.1016/j.jksus.2018.03.017
Meyer E, Betancur-Agudelo M, Ventura BS, dos Anjos KG, do Scarsanella JA, Vieira AS, et al. Mycorrhizal root colonization in maize fields is more affected by soil management and climate conditions than by plant genotype. Arch Microbiol. 2021 Sep 24; 203 (7):4609–18. https://doi.org/10.1007/ s00203-021-02429-w PMID: 34165624
Heinemeyer A, Ineson P, Ostle N, Fitter AH. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytologist. 2006 Jul 25; 171 (1):159–70. https://doi.org/10.1111/j.1469-8137.2006.01730.x PMID: 16771991
Liu A, Wang B, Hamel C. Arbuscular mycorrhiza colonization and development at suboptimal root zone temperature. Mycorrhiza. 2004 Apr 1; 14 (2):93–101. https://doi.org/10.1007/s00572-003-0242-9 PMID: 12748840
Zhu XC, Song FB, Liu SQ, Liu TD. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil. 2011 Sep 12; 346 (1–2):189–99. https://doi.org/10.1007/s11104-011-0809-8
Siles JA, Cajthaml T, Filipová A, Minerbi S, Margesin R. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biol Biochem. 2017 Sep; 112:1–13. https://doi.org/10.1016/j.soilbio.2017.04.014
Pertin M, Dai Nimasow. Diversity of arbuscular mycorrhizal fungi (AMF) and root colonization trends along altitudinal gradient: a case study in Western Arunachal Pradesh. Journal of Bioresources. 2022; 9(1):60–4. https://doi.org/10.5281/zenodo.8370174
Zhao F, Feng X, Guo Y, Ren C, Wang J, Doughty R. Elevation gradients affect the differences of arbuscular mycorrhizal fungi diversity between root and rhizosphere soil. Agric For Meteorol. 2020 Apr; 284:107894. https://doi.org/10.1016/j.agrformet.2019.107894
Li X, Gai J, Cai X, Li X, Christie P, Zhang F, et al. Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza. 2014 Feb 3; 24(2):95–107. https://doi.org/10.1007/s00572-013-0518-7 PMID: 23912811
Gai JP, Tian H, Yang FY, Christie P, Li XL, Klironomos JN. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia (Jena). 2012 May; 55(3):145–51. https://doi.org/10.1016/j.pedobi.2011.12.004
Uwamungu JY, Shi G, Wang Y, Paliwal A, Jadhav RR, Wani AW. Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Soil and Plant Health. In: Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation. Cham: Springer International Publishing; 2022. p. 135–52. https://doi.org/10.1007/978-3-031-08830-8_6
Giovannetti M, Avio L, Sbrana C. Fungal Spore Germination and Pre-symbiotic Mycelial Growth–Physiological and Genetic Aspects. In: Arbuscular Mycorrhizas: Physiology and Function. Dordrecht: Springer Netherlands; 2010. p. 3–32. https://doi.org/10.1007/978-90-481-9489-6_1
Ouyang JX, He YD, Yang B, Zhou JZ, Li W, Cao Y. Elevation, but not phosphorus, shapes arbuscular mycorrhizal fungal colonization of plateau wetland plants: A case study of the Qinghai-Tibet Plateau. Glob Ecol Conserv. 2023 Oct; 46:e02611. https://doi.org/10.1016/j.gecco.2023.e02611
Ruotsalainen A, Va¨re H, Oksanen J, Tuomi J. Root Fungus Colonization along an Altitudinal Gradient in North Norway. Arct Antarct Alp Res. 2004; 36(2):339–43. https://doi.org/10.1657/15230430
Zubek S, Błaszkowski J, Delimat A, Turnau K. Arbuscular Mycorrhizal and Dark Septate Endophyte Colonization along Altitudinal Gradients in the Tatra Mountains. Arct Antarct Alp Res. 2009 May 17; 41 (2):272–9. https://doi.org/10.1657/1938-4246-41.2.272
He F., Tang M., Zhong S. L., Yang R., Huang L., & Zhang H. Q. Effects of soil and climatic factors on arbuscular mycorrhizal fungi in rhizosphere soil under R obinia pseudoacacia in the L oess P lateau, C hina. European Journal of Soil Science. 2016; 67(6), 847–856. https://doi.org/10.1111/ejss.12381
St Clair SB, Lynch JP. Base cation stimulation of mycorrhization and photosynthesis of sugar maple on acid soils are coupled by foliar nutrient dynamics. New phytologist. 2005;581–90. https://doi.org/10.1111/j.1469-8137.2004.01249.x PMID: 15720668
Lambers H, Raven J, Shaver G, Smith S. Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol. 2008 Feb; 23(2):95–103. https://doi.org/10.1016/j.tree.2007.10.008 PMID: 18191280
Ma X, Li X, Ludewig U. Arbuscular mycorrhizal colonization outcompetes root hairs in maize under low phosphorus availability. Ann Bot. 2021 Jan 1; 127(1):155–66. https://doi.org/10.1093/aob/mcaa159 PMID: 32877525
Han X, Xu C, Wang Y, Huang D, Fan Q, Xin G, et al. Dynamics of arbuscular mycorrhizal fungi in relation to root colonization, spore density, and soil properties among different spreading stages of the exotic plant threeflower beggarweed (Desmodium triflorum) in a Zoysia tenuifolia lawn. Weed Sci. 2019 Nov 4; 67(6):689–701. https://doi.org/10.1017/wsc.2019.50
Qin Z, Zhang H, Feng G, Christie P, Zhang J, Li X, et al. Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil. Soil Biol Biochem. 2020 May; 144:107790. https://doi.org/10.1016/j.soilbio.2020.107790
Johnson, Jean-martial, Houngnandan, Pascal, Kane, Aboubacry, et al. Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin (West Africa): an exploratory study. Annals of microbiology, 2016, vol. 66, p. 207–221. https://doi.org/10.1007/s13213-015-1097-y
Mukhongo R. W., Ebanyat P., Masso C., & Tumuhairwe J. B. Composition and spore abundance of arbuscular mycorrhizal fungi in sweet potato producing areas in Uganda. Frontiers in Soil Science. 2023; 3, 1152524. https://doi.org/10.3389/fsoil.2023.1152524
Liu J, Li S, Ji Q. Regional differences and driving factors analysis of carbon emission intensity from transport sector in China. Energy. 2021 Jun; 224: 120178. https://doi.org/10.1016/j.energy.2021.120178
Zhang P., Qin D., Chen J., & Zhang Z. Plants in the genus Tephrosia: valuable resources for botanical insecticides. Insects. 2020; 11(10), 721. https://doi.org/10.3390/insects11100721 PMID: 33096762
Yu L, Zhang Z, Zhou L, Huang K. Effects of Altitude and Continuous Cropping on Arbuscular Mycorrhizal Fungi Community in Siraitia grosvenorii Rhizosphere. Agriculture (Switzerland). 2023 Aug 1; 13 (8). https://doi.org/10.3390/agriculture13081548
Yang X., Mariotte P., Guo J., Hautier Y., & Zhang T. Suppression of arbuscular mycorrhizal fungi decreases the temporal stability of community productivity under elevated temperature and nitrogen addition in a temperate meadow. Science of The Total Environment. 2020; 143137. https://doi.org/10.1016/j.scitotenv.2020.1431
da Silva Barros TH, de Araujo Pereira AP, de Souza AJ, Ribeiro NL, Cardoso EJBN, Coelho RD. Influence of Sugarcane Genotype and Soil Moisture Level on the Arbuscular Mycorrhizal Fungi Community. Sugar Tech. 2019 Jun 16; 21(3):505–13.
Nongkling P, Kayang H. Soil physicochemical properties and its relationship with AMF spore density under two cropping systems. Current Research in Environmental & Applied Mycology. 2017; 7(1):33–9. https://doi.org/10.5943/cream/7/1/5
Carrenho R, Trufem SFB, Bononi VLR, Silva ES. The effect of different soil properties on arbuscular mycorrhizal colonization of peanuts, sorghum and maize. Acta Bot Brasilica. 2007 Sep; 21(3):723–30. https://doi.org/10.1590/S0102-33062007000300018
Seifi E, Teymoor YS, Alizadeh M, Fereydooni H. Olive mycorrhization: Influences of genotype, mycorrhiza, and growing periods. Sci Hortic. 2014; 180:214–9. https://doi.org/10.1016/j.scienta.2014.10.042
Diedhiou AG, Mbaye FK, Mbodj D, Faye MN, Pignoly S, Ndoye I, et al. Field trials reveal ecotype-specific responses to mycorrhizal inoculation in rice. PLoS One. 2016 Dec 1; 11 (12). https://doi.org/10.1371/journal.pone.0167014 PMID: 27907023