[en] This study explores the variation in mechanical properties of additively manufactured composite structures for robotic applications with different infill densities and layer heights using fused deposition modelling (FDM). Glass fibre-reinforced polyamide (GFRP), and carbon fibre-reinforced polyamide (CFRP) filaments are used, and the specimens are printed with 20%, 40%, 60% and 100% infill density lattice structures for tensile and three-point bending tests. These printed samples are examined in the microscope to gain more understanding of the microstructure of the printed composites. To characterise the mechanical properties, a set of tensile and three-point bend tests are conducted on the manufactured composite samples. Test results indicate the variations in tensile strength and Young’s modulus of specimens based on the printing parameters and reveal the tensile and bending behaviour of those printed composite structures against varying infill ratios and reinforcing fibres. The experimental findings are also compared to analytical and empirical modelling approaches. Finally, based on the results, the applications of the additively manufactured structure to the robotic components are presented.
Bisoi, Arnav; Department of Mechanical Engineering, Imperial College London, London, United Kingdom
Tüfekci, Mertol ; Department of Mechanical Engineering, Imperial College London, London, United Kingdom
Öztekin, Vehbi; Faculty of Mechanical Engineering, Istanbul Technical University, İstanbul, Turkey
Denimal Goy, Enora; Department of Mechanical Engineering, Imperial College London, London, United Kingdom ; Université Gustave Eiffel, COSYS-SII, Rennes, France
Salles, Loïc ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mechanical aspects of turbomachinery and aerospace propulsion ; Department of Mechanical Engineering, Imperial College London, London, United Kingdom
Language :
English
Title :
Experimental Investigation of Mechanical Properties of Additively Manufactured Fibre-Reinforced Composite Structures for Robotic Applications
Dilberoglu, U.M., Gharehpapagh, B., Yaman, U., Dolen, M.: The role of additive manufacturing in the era of industry 4.0. Procedia Manuf. 11, 545–554 (2017). https://doi.org/10.1016/j.promfg.2017.07.148
Lee, C.H., Padzil, F.N.B.M., Lee, S.H., Ainun, Z.M.A., Abdullah, L.C.: Potential for natural fiber reinforcement in pla polymer filaments for fused deposition modeling (Fdm) additive manufacturing: A review. Polymers (Basel) 13, 1407 (2021). https://doi.org/10.3390/polym13091407
S. Marimuthu D. Clark J. Allen A.M. Kamara P. Mativenga L. Li R. Scudamore Finite element modelling of substrate thermal distortion in direct laser additive manufacture of an aero-engine component Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2013 227 1987 1999 10.1177/0954406212470363
ASTM: StandardTerminology for Additive Manufacturing Technologies (2016)
X. Wang M. Jiang Z. Zhou J. Gou D. Hui 3D printing of polymer matrix composites: A review and prospective Compos. B Eng. 2017 110 442 458 1:CAS:528:DC%2BC28XhvFyms7jK 10.1016/j.compositesb.2016.11.034
S.D. Nath S. Nilufar An overview of additive manufacturing of polymers and associated composites Polymers (Basel) 2020 12 1 33 1:CAS:528:DC%2BB3cXisVKks7vI 10.3390/polym12112719
S. Antony A. Cherouat G. Montay Fabrication and Characterization of Hemp Fibre Based 3D Printed Honeycomb Sandwich Structure by FDM Process Appl. Compos. Mater. 2020 27 935 953 1:CAS:528:DC%2BB3MXpvFGitbg%3D 10.1007/s10443-020-09837-z
Aw, Y.Y., Yeoh, C.K., Idris, M.A., Teh, P.L., Hamzah, K.A., Sazali, S.A.: Effect of printing parameters on tensile, dynamic mechanical, and thermoelectric properties of FDM 3D printed CABS/ZnO composites. Materials 11 (2018). https://doi.org/10.3390/ma11040466
Suteja, T.J., Soesanti, A.: Mechanical Properties of 3D Printed Polylactic Acid Product for Various Infill Design Parameters: A Review. J. Phys. Conf. Ser. 1569 (2020). https://doi.org/10.1088/1742-6596/1569/4/042010
Khan, S.A., Siddiqui, B.A., Fahad, M., Khan, M.A.: Evaluation of the effect of infill pattern on mechanical stregnth of additively manufactured specimen. Mater. Sci. Forum 887 MSF, 128–132 (2017). https://doi.org/10.4028/www.scientific.net/MSF.887.128
T.J. Quill M.K. Smith T. Zhou M.G.S. Baioumy J.P. Berenguer B.A. Cola K. Kalaitzidou T.L. Bougher Thermal and mechanical properties of 3D printed boron nitride – ABS composites Appl. Compos.Mater. 2018 25 1205 1217 1:CAS:528:DC%2BC2sXhslKntL7K 10.1007/s10443-017-9661-1
S. Chen D. Li J. Xiang S. Zhao Composite Manufacturing Cost Model Targeting on Design Optimization Appl. Compos. Mater. 2020 27 673 691 1:CAS:528:DC%2BB3cXitFeqsr7F 10.1007/s10443-020-09828-0
Wang, K., Xie, X., Wang, J., Zhao, A., Peng, Y., Rao, Y.: Effects of infill characteristics and strain rate on the deformation and failure properties of additively manufactured polyamide-based composite structures. Results Phys. 18,(2020)
V. Kovan G. Altan E.S. Topal Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints J. Mech. Sci. Technol. 2017 31 2197 2201 10.1007/s12206-017-0415-7
A.K. Sood R.K. Ohdar S.S. Mahapatra Parametric appraisal of mechanical property of fused deposition modelling processed parts Mater. Des. 2010 31 287 295 1:CAS:528:DC%2BD1MXhtV2ktr7E 10.1016/j.matdes.2009.06.016
H. Gonabadi A. Yadav S.J. Bull The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer Int. J. Adv. Manuf. Technol. 2020 111 695 709 10.1007/s00170-020-06138-4
Fernandez-Vicente, M., Calle, W., Ferrandiz, S., Conejero, A.: Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Print Addit Manuf. 3, 183–192 (2016). https://doi.org/10.1089/3dp.2015.0036
Ćwikła, G., Grabowik, C., Kalinowski, K., Paprocka, I., Ociepka, P.: The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conf. Ser. Mater. Sci. Eng. 227, (2017). https://doi.org/10.1088/1757-899X/227/1/012033
Sukindar, N.A. Bin, Bin, M.K.A.M.A., Hang Tuah Bin, B.T.B., Binti, C.N.A.J., Bin, M.I.S.I.: Analysis on the impact process parameters on tensile strength using 3d printer repetier-host software. ARPN J. Engi. Appl. Sci. 12, 3341–3346 (2017)
A. Clausen N. Aage O. Sigmund Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load Engineering 2016 2 250 257 10.1016/J.ENG.2016.02.006
J. Wu A. Clausen O. Sigmund Minimum compliance topology optimization of shell–infill composites for additive manufacturing Comput. Methods Appl. Mech. Eng. 2017 326 358 375 10.1016/j.cma.2017.08.018
V. Cojocaru Influence of Rectilinear Infill Parameters on Mechanical Behavior of 3D Printed Parts - a Fem Approach Robotica Manag. 2019 24 4 8
V. Cojocaru C. Miclosina Influence of Rectilinear Infill Parameters on Stress State of Mechanical Structures Components Robotica Manag. 2020 25 4 12
Plocher, J., Panesar, A.: Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures. Addit Manuf. 33, (2020). https://doi.org/10.1016/j.addma.2020.101171
Peng, C., Fox, K., Qian, M., Nguyen-Xuan, H., Tran, P.: 3D printed sandwich beams with bioinspired cores: Mechanical performance and modelling. Thin-Walled Struct. 161,(2021)
W. Becker Closed-form analysis of the thickness effect of regular honeycomb core material Compos. Struct. 2000 48 67 70 10.1016/S0263-8223(99)00074-4
Nasirov, A., Fidan, I.: Prediction of mechanical properties of fused filament fabricated structures via asymptotic homogenization. Mech. Mater. 145 (2020). https://doi.org/10.1016/j.mechmat.2020.103372
I. Maskery I.A. Ashcroft The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering Addit Manuf. 2020 36 1:CAS:528:DC%2BB3MXhvFegsQ%3D%3D 10.1016/j.addma.2020.101548
H. Zhang D. Yang Y. Sheng Performance-driven 3D printing of continuous curved carbon fibre reinforced polymer composites: A preliminary numerical study Compos. B Eng. 2018 151 256 264 1:CAS:528:DC%2BC1cXhtlSrtb7I 10.1016/j.compositesb.2018.06.017
Pascual-González, C., Iragi, M., Fernández, A., Fernández-Blázquez, J.P., Aretxabaleta, L., Lopes, C.S.: An approach to analyse the factors behind the micromechanical response of 3D-printed composites. Compos. B Eng. 186 (2020). https://doi.org/10.1016/j.compositesb.2020.107820
M. Yamawaki Y. Kouno Fabrication and mechanical characterization of continuous carbon fiber-reinforced thermoplastic using a preform by three-dimensional printing and via hot-press molding Adv. Compos. Mater. 2018 27 209 219 1:CAS:528:DC%2BC2sXhsVWku7%2FI 10.1080/09243046.2017.1368840
K. Abouzaid D. Bassir S. Guessasma H. Yue Modelling the Process of Fused Deposition Modelling and the Effect of Temperature on the Mechanical, Roughness, and Porosity Properties of Resulting Composite Products Mech. Compos. Mater. 2021 56 805 816 10.1007/s11029-021-09925-6
J. Justo L. Távara L. García-Guzmán F. París Characterization of 3D printed long fibre reinforced composites Compos. Struct. 2018 185 537 548 10.1016/j.compstruct.2017.11.052
Kuncius, T., Rimašauskas, M., Rimašauskienė, R.: Interlayer adhesion analysis of 3d-printed continuous carbon fibre-reinforced composites. Polymers (Basel) 13 (2021). https://doi.org/10.3390/polym13101653
Z. Hou X. Tian J. Zhang D. Li 3D printed continuous fibre reinforced composite corrugated structure Compos. Struct. 2018 184 1005 1010 10.1016/j.compstruct.2017.10.080
G.W. Melenka B.K.O. Cheung J.S. Schofield M.R. Dawson J.P. Carey Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures Compos. Struct. 2016 153 866 875 10.1016/j.compstruct.2016.07.018
Goh, G.D., Dikshit, V., An, J., Yeong, W.Y.: Process-structure-property of additively manufactured continuous carbon fiber reinforced thermoplastic: an investigation of mode I interlaminar fracture toughness. Mech. Adv. Mater. Struct. 0, 1–13 (2020). https://doi.org/10.1080/15376494.2020.1821266
C.E. Bakis R.T. Haluza J. Bartolai J.J. Kim T.W. Simpson Assessment of anisotropic mechanical properties of a 3D printed carbon whisker reinforced composite Adv. Compos. Mater. 2019 28 545 560 1:CAS:528:DC%2BC1MXhsFGgtbbL 10.1080/09243046.2019.1652030
Balla, V.K., Kate, K.H., Satyavolu, J., Singh, P., Tadimeti, J.G.D.: Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Compos. B Eng. 174,(2019)
M. Ivey G.W. Melenka J.P. Carey C. Ayranci Characterizing short-fiber-reinforced composites produced using additive manufacturing Adv. Manuf. Polym. Compos. Sci. 2017 3 81 91 1:CAS:528:DC%2BC1cXkt1ant74%3D 10.1080/20550340.2017.1341125
F. Ning W. Cong J. Qiu J. Wei S. Wang Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling Compos. B Eng. 2015 80 369 378 1:CAS:528:DC%2BC2MXhtVOlsLzE 10.1016/j.compositesb.2015.06.013
A. Nour H. Mechakra B. Benkoussas I. Tawfiq A.T. Settet R. Renane Modeling a Composite Reinforced with Short Alfa Fibers to Determine its Fatigue and Structural Homogenization Mech. Compos. Mater. 2018 54 487 498 1:CAS:528:DC%2BC1cXhslGqtb%2FF 10.1007/s11029-018-9758-0
Nasirov, A., Gupta, A., Hasanov, S., Fidan, I.: Three-scale asymptotic homogenization of short fiber reinforced additively manufactured polymer composites. Compos. B Eng. 202, (2020). https://doi.org/10.1016/j.compositesb.2020.108269
H. Al Abadi H.T. Thai V. Paton-Cole V.I. Patel Elastic properties of 3D printed fibre-reinforced structures Compos. Struct. 2018 193 8 18 10.1016/j.compstruct.2018.03.051
Tüfekci, M., Özkal, B., Maharaj, C., Liu, H., Dear, J.P., Salles, L.: Strain-rate-dependent mechanics and impact performance of epoxy-based nanocomposites. Compos. Sci. Technol. 233,(2023)
H.L. Tekinalp V. Kunc G.M. Velez-Garcia C.E. Duty L.J. Love A.K. Naskar C.A. Blue S. Ozcan Highly oriented carbon fiber-polymer composites via additive manufacturing Compos. Sci. Technol. 2014 105 144 150 1:CAS:528:DC%2BC2cXhslOktLrI 10.1016/j.compscitech.2014.10.009
G. Griffini M. Invernizzi M. Levi G. Natale G. Postiglione S. Turri 3D-printable CFR polymer composites with dual-cure sequential IPNs Polymer (Guildf) 2016 91 174 179 1:CAS:528:DC%2BC28XlslWls7g%3D 10.1016/j.polymer.2016.03.048
Naima Khalid, N., Afiqah Mohd Radzuan, N., Bakar Sulong, A., Mohd Foudzi, F.: A review on bonding of Polyamide reinforced carbon fibre via additive manufacturing. IOP Conf. Ser. Mater. Sci. Eng. 1078, 012004 (2021). https://doi.org/10.1088/1757-899x/1078/1/012004
Abderrafai, Y., Hadi Mahdavi, M., Sosa-Rey, F., Hérard, C., Otero Navas, I., Piccirelli, N., Lévesque, M., Therriault, D.: Additive manufacturing of short carbon fiber-reinforced polyamide composites by fused filament fabrication: Formulation, manufacturing and characterization. Mater. Des. 214,(2022)
A. Al Rashid H. Ikram M. Koç Additive manufacturing and mechanical performance of carbon fiber reinforced Polyamide-6 composites Mater. Today Proc. 2022 62 6359 6363 1:CAS:528:DC%2BB38XhsVOqsr3K 10.1016/j.matpr.2022.03.339
K., P., M., M., P., S.P.: Technologies in additive manufacturing for fiber reinforced composite materials: a review. Curr. Opin. Chem. Eng. 28, 51–59 (2020). https://doi.org/10.1016/j.coche.2020.01.001
A. Jansson L. Pejryd Characterisation of carbon fibre-reinforced polyamide manufactured by selective laser sintering Addit Manuf. 2016 9 7 13 1:CAS:528:DC%2BC2sXmvVGrsL0%3D 10.1016/j.addma.2015.12.003
R. Roy S.J. Park J.H. Kweon J.H. Choi Characterization of Nomex honeycomb core constituent material mechanical properties Compos. Struct. 2014 117 255 266 10.1016/j.compstruct.2014.06.033
Li, N., Link, G., Wang, T., Ramopoulos, V., Neumaier, D., Hofele, J., Walter, M., Jelonnek, J.: Path-designed 3D printing for topological optimized continuous carbon fibre reinforced composite structures. Compos. B Eng. 182,(2020)
M. Srivastava S. Rathee Optimisation of FDM process parameters by Taguchi method for imparting customised properties to components Virtual Phys. Prototyp. 2018 13 203 210 10.1080/17452759.2018.1440722
Y. Zhang Y.K. Chou Three-dimensional finite element analysis simulations of the fused deposition modelling process Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2006 220 1663 1671 10.1243/09544054JEM572
C. Bellehumeur L. Li Q. Sun P. Gu Modeling of bond formation between polymer filaments in the fused deposition modeling process J. Manuf. Proc. 2004 6 170 178 10.1016/S1526-6125(04)70071-7
Penumakala, P.K., Santo, J., Thomas, A.: A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos. B Eng. 201,(2020)
T. Lieneke V. Denzer G.A.O. Adam D. Zimmer Dimensional Tolerances for Additive Manufacturing: Experimental Investigation for Fused Deposition Modeling Procedia CIRP 2016 43 286 291 10.1016/j.procir.2016.02.361
B. Wittbrodt J.M. Pearce The effects of PLA color on material properties of 3-D printed components Addit Manuf. 2015 8 110 116 1:CAS:528:DC%2BC2sXmvVGktLg%3D 10.1016/j.addma.2015.09.006
C. Ziemian M. Sharma S. Ziemi Anisotropic Mechanical Properties of ABS Parts Fabricated by Fused Deposition Modelling Mech. Eng. 2012 10.5772/34233
G. Alaimo S. Marconi L. Costato F. Auricchio Influence of meso-structure and chemical composition on FDM 3D-printed parts Compos. B Eng. 2017 113 371 380 1:CAS:528:DC%2BC2sXislGhtLY%3D 10.1016/j.compositesb.2017.01.019
Romanowski, H., Bierkandt, F.S., Luch, A., Laux, P.: Summary and derived risk assessment of 3D printing emission studies. Atmos. Environ. 294,(2023)
P. Parandoush D. Lin A review on additive manufacturing of polymer-fiber composites Compos. Struct. 2017 182 36 53 10.1016/j.compstruct.2017.08.088
M. Vaezi S. Yang Extrusion-based additive manufacturing of PEEK for biomedical applications Virtual Phys. Prototyp. 2015 10 123 135 10.1080/17452759.2015.1097053
Denimal, E., El Haddad, F., Wong, C., Salles, L.: Topological optimization of under-platform dampers with moving morphable components and global optimization algorithm for nonlinear frequency response. Proc. ASME Turbo Expo. 2D-2020 (2020). https://doi.org/10.1115/GT2020-14394
ASTM-D882-10: Standard Test Method for Tensile Properties of Plastics. (2010)
ASTM INTERNATIONAL: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. D790. Annual Book of ASTM Standards. 1–12 (2002). https://doi.org/10.1520/D0790-17.2
L. Baich G. Manogharan H. Marie Study of infill print design on production cost-time of 3D printed ABS parts Liseli Baich, Guha Manogharan Int. J. Rapid Manuf. 2015 5 308 319 10.1504/IJRAPIDM.2015.074809
Materials, P., Materials, E.I., Matrix, P., Materials, C., Specimens, P.: Standard Test Method for Tensile Properties of Plastics. 1, 1–15 (2006). https://doi.org/10.1520/D0638-14.1
Barbero, E.J.: Finite element analysis of composite materials using Abaqus. (2013)
Gay, D., Hoa, S. V., Tsai, S.W.: Composite materials: Design and applications. (2002)
T.D. Ngo A. Kashani G. Imbalzano K.T.Q. Nguyen D. Hui Additive manufacturing (3D printing): A review of materials, methods, applications and challenges Compos. B Eng. 2018 143 172 196 1:CAS:528:DC%2BC1cXjt12ht74%3D 10.1016/j.compositesb.2018.02.012
Omar, N.W.Y., Shuaib, N.A., Hadi, M.H.J.A., Azmi, A.I.: Mechanical properties of carbon and glass fibre reinforced composites produced by additive manufacturing: A short review. IOP Conf. Ser. Mater. Sci. Eng. 670 (2019). https://doi.org/10.1088/1757-899X/670/1/012020
Tüfekci, M.: Performance evaluation analysis of Ti-6Al-4V foam fan blades in aircraft engines: A numerical study. Compos. Part C: Open Access 12,(2023)
Fuller, J., Mitchell, S., Pozegic, T., Wu, X., Longana, M., Wisnom, M.: Experimental evaluation of hygrothermal effects on pseudo-ductile thin ply angle-ply carbon/epoxy laminates. Compos. B Eng. 227,(2021)
S. Acarer İ. Pir M. Tüfekci T. Erkoç S. Güneş Durak V. Öztekin G. Türkoǧlu Demirkol M.Ş. Özçoban T.Y. Temelli Çoban S. Ćavuş N. Tüfekci Halloysite Nanotube-Enhanced Polyacrylonitrile Ultrafiltration Membranes: Fabrication, Characterization, and Performance Evaluation ACS Omega 2023 8 34729 34745 1:CAS:528:DC%2BB3sXhvVOnurbF 10.1021/acsomega.3c03655 37779974 10536855
Acarer, S., Pir, İ., Tüfekci, M., Erkoҫ, T., Öztekin, V., Durak, S.G., Özҫoban, M.Ş., Demirkol, G.T., Alhammod, M., avuş, S., Tüfekci, N.: Characterisation and modelling the mechanics of cellulose nanofibril added polyethersulfone ultrafiltration membranes. Heliyon 9, e13086 (2023). https://doi.org/10.1016/j.heliyon.2023.e13086
S. Acarer İ. Pir M. Tüfekci T. Erkoç V. Öztekin C. Dikicioğlu G.T. Demirkol S.G. Durak M.Ş. Özçoban T.Y.T. Çoban S. Çavuş N. Tüfekci Characterisation and Mechanical Modelling of Polyacrylonitrile-Based Nanocomposite Membranes Reinforced with Silica Nanoparticles Nanomaterials 2022 12 3721 1:CAS:528:DC%2BB38XivV2nu73O 10.3390/nano12213721 36364496 9657008