[en] This study investigates the vibration characteristics of rectangular cross-sectioned and straight beams with imperfect supports, focusing on the role of dry friction at the contact interfaces. The contact interactions are reduced to resultant point loads, and the friction at the contact interfaces is modelled using the Jenkins friction model, introducing nonlinearity into the system. These nonlinear terms are included in solution-dependent boundary conditions for the governing differential equation of beam vibration. Two cases are considered in detail and solved: one where the beam is tightened between rigid clamps at both ends and excited from the middle with a harmonic displacement function, and another where only one end is clamped with the other end free but excited with an imposed harmonic displacement. The governing differential equation is solved analytically, separating the motion into two distinct regimes - full-stick and full-slip, using the Galerkin method. The results acquired from this analytical model are then compared to those from a numerical model, which is built and solved using the finite element method combined with a frequency sweep and time-marching.
Disciplines :
Mechanical engineering
Author, co-author :
Tüfekci, Mertol ; Imperial College London Department of Mechanical Engineering, London, United Kingdom
Dear, John P. ; Imperial College London Department of Mechanical Engineering, London, United Kingdom
Salles, Loïc ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mechanical aspects of turbomachinery and aerospace propulsion ; Imperial College London Department of Mechanical Engineering, London, United Kingdom
Language :
English
Title :
Forced vibration analysis of beams with frictional clamps
TÜBİTAK - Scientific and Technological Research Council of Turkey
Funding text :
Mertol Tüfekci would like to acknowledge the support of the Scientific and Technological Research Council of Turkey (TÜBİTAK) (fund BİDEB 2213 2016/2 ) that makes this research possible.Mertol Tüfekci would like to acknowledge the support of the Scientific and Technological Research Council of Turkey (TÜBİTAK) (fund BİDEB 2213 2016/2) that makes this research possible. The authors would also like to acknowledge computational resources and support provided by the Imperial College Research Computing Service (https://doi.org/10.14469/hpc/2232). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Senthil Kumar, K., Siva, I., Jeyaraj, P., Winowlin Jappes, J.T., Amico, S.C., Rajini, N., Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Mater. Des. 56 (2014), 379–386, 10.1016/j.matdes.2013.11.039.
Jočković, M., Radenković, G., Nefovska-Danilović, M., Baitsch, M., Free vibration analysis of spatial Bernoulli–Euler and Rayleigh curved beams using isogeometric approach. Appl. Math. Model. 71 (2019), 152–172, 10.1016/j.apm.2019.02.002.
Eroglu, U., Tufekci, E., Small-amplitude free vibrations of straight beams subjected to large displacements and rotation. Appl. Math. Model. 53 (2018), 223–241, 10.1016/j.apm.2017.08.028.
Koc, H., Tufekci, E., A novel approach of bending behavior of carbon nanotubes by combining the effects of higher-order boundary conditions and coupling through doublet mechanics. Mech. Adv. Mat. Struct., 2023, 10.1080/15376494.2023.2263767.
Tufekci, E., Exact solution of free in-plane vibration of shallow circular arches. Int. J. Struct. Stab. Dyn. 01 (2001), 409–428, 10.1142/s0219455401000226.
Li, Y.S., Xiao, T., Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory. Appl. Math. Model. 96 (2021), 733–750, 10.1016/j.apm.2021.03.028.
Liu, H., Zhang, Q., Nonlinear dynamics of two-directional functionally graded microbeam with geometrical imperfection using unified shear deformable beam theory. Appl. Math. Model. 98 (2021), 783–800, 10.1016/j.apm.2021.05.029.
Foraboschi, P., Schnabl, S., Saje, M., Turk, G., Planinc, I., Analytical solution of two-layer beam taking into account nonlinear interlayer slip. J. Eng. Mech. 135 (2009), 1129–1146, 10.1061/(asce)em.1943-7889.0000043.
Temel, B., Çalim, F.F., Tütüncü, N., Quasi-static and dynamic response of viscoelastic helical rods. J. Sound Vib. 271 (2004), 921–935, 10.1016/S0022-460X(03)00760-0.
Kim, T., Hansen, A.M., Branner, K., Development of an anisotropic beam finite element for composite wind turbine blades in multibody system. Renew. Energy 59 (2013), 172–183, 10.1016/j.renene.2013.03.033.
Akgöz, B., Civalek, Ömer, Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment. Composites, Part B, Eng. 150 (2018), 68–77, 10.1016/j.compositesb.2018.05.049.
Numanoğlu, H.M., Ersoy, H., Akgöz, B., Civalek, Ömer, A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math. Methods Appl. Sci. 45 (2022), 2592–2614, 10.1002/mma.7942.
Vo, T.P., Thai, H.T., Aydogdu, M., Free vibration of axially loaded composite beams using a four-unknown shear and normal deformation theory. Compos. Struct. 178 (2017), 406–414, 10.1016/j.compstruct.2017.07.022.
Saravanos, D.A., Chamis, C.C., Integrated mechanics for the passive damping of polymer-matrix composites and composite structures. ASME J. Appl. Mech. 61 (1991), 375–383, 10.1016/0010-4361(91)90379-U http://ntrs.nasa.gov/search.jsp?R=19910022867.
Saravanos, D.A., Chamis, C.C., Computational simulation of damping in composite structures. J. Reinf. Plast. Compos. 10 (1991), 256–278, 10.1177/073168449101000302.
Mustafa, M.I., Laminated Timoshenko beams with viscoelastic damping. J. Math. Anal. Appl. 466 (2018), 619–641, 10.1016/j.jmaa.2018.06.016.
Albas, Şeref D., Ersoy, H., Akgöz, B., Civalek, Ömer, Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz method. Mathematics, 9, 2021, 10.3390/math9091048.
Demir, Çiğdem, Civalek, Ömer, On the analysis of microbeams. Int. J. Eng. Sci. 121 (2017), 14–33, 10.1016/j.ijengsci.2017.08.016.
Liu, X., Wada, T., Suzuki, A., Takata, N., Kobashi, M., Kato, M., Understanding and suppressing shear band formation in strut-based lattice structures manufactured by laser powder bed fusion. Mater. Des., 199, 2021, 109416, 10.1016/j.matdes.2020.109416.
Civalek, Ömer, Uzun, B., Özgür Yaylı, M., An effective analytical method for buckling solutions of a restrained fgm nonlocal beam. Comput. Appl. Math., 41, 2022, 10.1007/s40314-022-01761-1.
Akgöz, B., Civalek, Ömer, Buckling analysis of functionally graded tapered microbeams via Rayleigh–Ritz method. Mathematics, 10, 2022, 10.3390/math10234429.
Rayleigh, J.W.S., The Theory of Sound, vol. 34. second edi ed., 1945, Dover Publications, New York http://eprints.utas.edu.au/4774/ arXiv:1011.1669v3.
Martinez-Agirre, M., Elejabarrieta, M.J., Dynamic characterization of high damping viscoelastic materials from vibration test data. J. Sound Vib. 330 (2011), 3930–3943, 10.1016/j.jsv.2011.03.025.
Adhikari, S., Damping models for structural vibration. Ph.D. thesis, 2000, University of Cambridge, Trinity College https://doi.org/10.1006/jsvi.1998.1709 http://engweb.swan.ac.uk/~adhikaris/fulltext/other/ftphd.pdf.
Crandall, S.H., The role of damping in vibration theory. J. Sound Vib. 11 (1970), 3–18, 10.1016/S0022-460X(70)80105-5.
Kergourlay, G., Balmès, E., Legal, G., A characterization of frequency-temperature-prestress effects in viscoelastic films. J. Sound Vib. 297 (2006), 391–407, 10.1016/j.jsv.2006.04.003.
Torvik, P.J., Bagley, R.L., On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1984), 294–298, 10.1115/1.3167615.
Schmidt, A., Gaul, L., Finite element formulation of viscoelastic constitutive equations using fractional derivatives. Nonlinear Dyn. 29 (2002), 37–55, 10.1023/A:1016552503411.
Law, H.H., Rossiter, P.L., Koss, L.L., Simon, G.P., Mechanisms in damping of mechanical vibration by piezoelectric ceramic-polymer composite materials. J. Mater. Sci. 30 (1995), 2648–2655, 10.1007/BF00362148.
Tang, B., Brennan, M.J., A comparison of the effects of nonlinear damping on the free vibration of a single-degree-of-freedom system. J. Vib. Acoust. 134 (2012), 1–5, 10.1115/1.4005010 http://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleid=1471676.
Tang, B., Brennan, M.J., A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332 (2013), 510–520, 10.1016/j.jsv.2012.09.010.
Banks, H.T., Inman, D.J., On damping mechanisms in beams. J. Appl. Mech., Trans. ASME 58 (1989), 716–723, 10.1115/1.2897253.
Mcpherson, B.N., Florida, C., Kauffman, J.L., Florida, C., Investigation of viscous damping terms for a Timoshenko beam. AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, January 2018, 1–12 https://doi.org/10.2514/6.2018-0456.
Lei, Y., Murmu, T., Adhikari, S., Friswell, M.I., Dynamic characteristics of damped viscoelastic nonlocal Euler-Bernoulli beams. Eur. J. Mech. A, Solids 42 (2013), 125–136, 10.1016/j.euromechsol.2013.04.006.
Fontanela, F., Grolet, A., Salles, L., Chabchoub, A., Champneys, A.R., Patsias, S., Hoffmann, N., Dissipative solitons in forced cyclic and symmetric structures. Mechanical Systems and Signal Processing, 2018, 3–5, 10.1016/j.ymssp.2018.08.011 http://arxiv.org/abs/1804.01321 arXiv:1804.01321.
Fontanela, F., Grolet, A., Salles, L., Hoffmann, N., Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods. J. Sound Vib., 2019, 10.1016/j.jsv.2018.09.002.
Egorov, A.G., Kamalutdinov, A.M., Nuriev, A.N., Evaluation of aerodynamic forces acting on oscillating cantilever beams based on the study of the damped flexural vibration of aluminium test samples. J. Sound Vib. 421 (2018), 334–347, 10.1016/j.jsv.2018.02.006.
Filipiak, J., Solarz, L., Zubko, K., Analysis of damping effect on beam vibration. Mol. Quantum Acoust. 27 (2006), 79–88 http://mqa.ogpta.polsl.pl/files-articles/27/pdf/079-088%7B%5C_%7DFilipiak%7B%5C_%7DSolarz%7B%5C_%7DZubko.pdf.
Schmid, S., Hierold, C., Damping mechanisms of single-clamped and prestressed double-clamped resonant polymer microbeams. J. Appl. Phys., 104, 2008, 10.1063/1.3008032.
Malikan, M., Nguyen, V.B., Tornabene, F., Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Int. J. Eng. Sci. Technol., 2018, 10.1016/j.jestch.2018.06.001.
Zhang, G.Y., Gao, X.L., Guo, Z.Y., A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mech. 228 (2017), 3811–3825, 10.1007/s00707-017-1906-4.
Shaw, S.W., On the dynamic response of a system with dry friction. J. Sound Vib. 108 (1986), 305–325, 10.1016/S0022-460X(86)80058-X.
He, B., Ouyang, H., He, S., Ren, X., Stick-slip vibration of a friction damper for energy dissipation. Adv. Mech. Eng. 9 (2017), 1–13, 10.1177/1687814017713921.
Feeny, B., Guran, A., Hinrichs, N., Popp, K., A historical review on dry friction and stick-slip phenomena. https://doi.org/10.1115/1.3099008, 1998.
Fishbane, P.M., Gasiorowicz, S., Thornton, S.T., Physics for Scientists and Engineers. I. extended e ed., 1993, Prentice Hall, Englewood Cliffs, New Jersey.
Ferris, M.C., Tin-Loi, F., Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints. Int. J. Mech. Sci. 43 (2001), 209–224, 10.1016/S0020-7403(99)00111-3.
Mabuchi, Y., Hanazato, T., Watabe, M., Static shear friction tests on the model marble columns of the Parthenon for the aseismic retrofitting. Trans. Built Environ. 4 (1993), 475–482.
Psycharis, I.N., Lemos, J.V., Papastamatiou, D.Y., Zambas, C., Papanponopoulos, C., Numerical study of the seismic behaviour of a part of the Parthenon Pronaos. Earthq. Eng. Struct. Dyn. 32 (2003), 2063–2084, 10.1002/eqe.315 https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.315?casa_token=Et9vCVFGlB8AAAAA:oxvg1Cf1nmutjjh_VbRogqCdilIRdjm8nN0UYVLwKQFKaViL0kZ4fph1c2DiUdqeGw7e5SDgapBvL5U https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.315?casa%7B%5C_%7Dtoken=Et9vCVFGlB8AAAA.
Courtel, M., Tichvinski, M.L., A brief history of friction. Nav. Eng. J., June 1964, 451–460, 10.1111/j.1559-3584.1964.tb04759.x.
Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P., Review and comparison of dry friction force models. Nonlinear Dyn. 83 (2016), 1785–1801, 10.1007/s11071-015-2485-3.
Jean, M., Pratt, E., A system of rigid bodies with dry friction. https://doi.org/10.1016/0020-7225(85)90060-6, 1985.
Martins, J.A.C., Simões, F.M.F., Gastaldi, F., Monteiro Marques, M.D.P., Dissipative graph solutions for a 2 degree-of-freedom quasistatic frictional contact problem. Int. J. Eng. Sci. 33 (1995), 1959–1986, 10.1016/0020-7225(95)00039-Z.
Skup, Z., Analysis of damping of vibrations through a frictional damper. J. Theor. Appl. Mech. 48 (2010), 465–478.
Berger, E.J.E.J., Friction modeling for dynamic system simulation. Appl. Mech. Rev., 55, 2002, 535, 10.1115/1.1501080.
Půst, L., Pešek, L., Radolfová, A., Various types of dry friction characteristics for vibration damping. Eng. Mech. 18 (2011), 203–224 http://dlib.lib.cas.cz:8080/2749/.
Marín, F., Alhama, F., Moreno, J.A., Modelling of stick-slip behaviour with different hypotheses on friction forces. https://doi.org/10.1016/j.ijengsci.2012.06.002, 2012.
Ionescu, I.R., Paumier, J.C., On the contact problem with slip displacement dependent friction in elastostatics. https://doi.org/10.1016/0020-7225(95)00109-3, 1996.
Xu, L., Lu, M.W., Cao, Q., Nonlinear vibrations of dynamical systems with a general form of piecewise-linear viscous damping by incremental harmonic balance method. Phys. Lett. A 301 (2002), 65–73, 10.1016/S0375-9601(02)00960-X http://linkinghub.elsevier.com/retrieve/pii/S037596010200960X.
Tan, X., Rogers, R.J., Equivalent viscous damping models of Coulomb friction in multi-degree-of-freedom vibration systems. J. Sound Vib. 185 (1995), 33–50, 10.1006/jsvi.1994.0362.
Friis, T., Tarpø, M., Katsanos, E.I., Brincker, R., Equivalent linear systems of nonlinear systems. J. Sound Vib., 469, 2020, 10.1016/j.jsv.2019.115126.
Goodman, L.E., Klumpp, J.H., Analysis of slip damping with reference of turbine-blade vibration. J. Appl. Mech. 32 (1956), 421–429.
Levy, G., Modelling of Coulomb damping and wear of vibrating systems. Wear 64 (1980), 57–82, 10.1016/0043-1648(80)90094-0.
Zharii, O.Y., An exact solution of a time-dependent frictional contact problem for two elastic spheres. https://doi.org/10.1016/0020-7225(95)00094-1, 1996.
Sun, Y., Yuan, J., Pesaresi, L., Salles, L., Nonlinear vibrational analysis for integrally bladed disk using frictional ring damper. J. Phys. Conf. Ser., 1106, 2018, 10.1088/1742-6596/1106/1/012026.
Pierre, C., Ferri, A.A., Dowell, E.H., Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method. J. Appl. Mech., 52, 2009, 958, 10.1115/1.3169175.
Won, H.I., Chung, J., Numerical analysis for the stick-slip vibration of a transversely moving beam in contact with a frictional wall. J. Sound Vib. 419 (2018), 42–62, 10.1016/j.jsv.2017.12.037.
Gastaldi, C., Berruti, T.M., Competitive time marching solution methods for systems with friction-induced nonlinearities. Appl. Sci. (Switzerland), 8, 2018, 10.3390/app8020291.
Labanda, N.A., Behnoudfar, P., Calo, V.M., An explicit predictor/multicorrector time marching with automatic adaptivity for finite-strain elastodynamics. J. Comput. Phys., 472, 2023, 10.1016/j.jcp.2022.111696.
Burlayenko, V.N., Sadowski, T., Nonlinear dynamic analysis of harmonically excited debonded sandwich plates using finite element modelling. Compos. Struct. 108 (2014), 354–366, 10.1016/j.compstruct.2013.09.042.
Klarbring, A., Mikelić, A., Shillor, M., Frictional contact problems with normal compliance. Int. J. Eng. Sci. 26 (1988), 811–832, 10.1016/0020-7225(88)90032-8.
Ferri, A.A., Bindemann, A.C., Damping and vibrations of beams with various types of frictional support conditions. Trans. Am. Soc. Mech. Eng. 114 (1992), 289–296.
Wright, G.P., O'Connor, J.J., Finite-element analysis of alternating axial loading of an elastic plate pressed between two elastic rectangular blocks with finite friction. Int. J. Eng. Sci. 9 (1971), 555–570, 10.1016/0020-7225(71)90038-3.
Ramsey, H., Analysis of interwire friction in multilayered cables under uniform extension and twisting. https://doi.org/10.1016/0020-7403(90)90011-7, 1990.
Cicirello, A., Langley, R.S., The vibro-acoustic analysis of built-up systems using a hybrid method with parametric and non-parametric uncertainties. J. Sound Vib. 332 (2013), 2165–2178, 10.1016/j.jsv.2012.05.040.
Cherki, A., Plessis, G., Lallemand, B., Tison, T., Level, P., Fuzzy behavior of mechanical systems with uncertain boundary conditions. Comput. Methods Appl. Mech. Eng. 189 (2000), 863–873, 10.1016/S0045-7825(99)00401-6.
Frýba, L., Nakagiri, S., Yoshikawa, N., Stochastic finite elements for a beam on a random foundation with uncertain damping under a moving force. https://doi.org/10.1006/jsvi.1993.1146, 1993.
Ritto, T.G., Sampaio, R., Cataldo, E., Timoshenko beam with uncertainty on the boundary conditions. J. Braz. Soc. Mech. Sci. Eng. 30 (2009), 295–303, 10.1590/s1678-58782008000400005.
Li, S., Reynders, E., Maes, K., De Roeck, G., Vibration-based estimation of axial force for a beam member with uncertain boundary conditions. J. Sound Vib. 332 (2013), 795–806, 10.1016/j.jsv.2012.10.019.
Ahmadian, H., Jalali, H., Pourahmadian, F., Nonlinear model identification of a frictional contact support. Mech. Syst. Signal Process. 24 (2010), 2844–2854, 10.1016/j.ymssp.2010.06.007.
Asadi, K., Ahmadian, H., Jalali, H., Micro/macro-slip damping in beams with frictional contact interface. J. Sound Vib. 331 (2012), 4704–4712, 10.1016/j.jsv.2012.05.026.
Ciǧeroǧlu, E., Özgüven, H.N., Nonlinear vibration analysis of bladed disks with dry friction dampers. J. Sound Vib. 295 (2006), 1028–1043, 10.1016/j.jsv.2006.02.009.
Marino, L., Cicirello, A., Dynamic response of multi-degree-of-freedom systems with a Coulomb friction contact under harmonic excitation. Nonlinear Dyn. 106 (2021), 1675–1709, 10.1007/s11071-021-06966-3.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.