[en] Surface freshening of the Southern Ocean driven by meltwater discharge from the Antarctic ice sheet has been shown to influence global climate dynamics. However, most climate models fail to account for spatially and temporally varying freshwater inputs from ice sheets, introducing significant uncertainty into climate projections. We present the first historically calibrated projections of Antarctic freshwater fluxes (subshelf melting, calving, and surface meltwater runoff) to 2300 that can be used to force climate models lacking interactive ice sheets. Our findings indicate substantial changes in the magnitude and partitioning of Antarctic freshwater discharge over the coming decades and centuries, particularly under very-high warming scenarios, driven by the progressive collapse of the West Antarctic ice shelves. We project a shift in the form and location of Antarctic freshwater sources, as liquid sub-shelf melting increases under the two climate scenarios considered, and surface meltwater runoff could potentially become a dominant contributor under extreme atmospheric warming.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Coulon, Violaine; Laboratoire de Glaciologie, Université libre de Bruxelles (ULB), Brussels, Belgium
De Rydt, Jan; Department of Geography and Environmental Sciences, Northumbria University, Newcastle, UK
Gregov, Thomas ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
Qin, Qing; Department of Geography and Environmental Sciences, Northumbria University, Newcastle, UK
Pattyn, Frank; Laboratoire de Glaciologie, Université libre de Bruxelles (ULB), Brussels, Belgium
Language :
English
Title :
Future Freshwater Fluxes From the Antarctic Ice Sheet
Publication date :
08 December 2024
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
Wiley, Washington, United States - District of Columbia
Volume :
51
Issue :
23
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
European Projects :
HE - 101060452 - OCEAN ICE - Ocean Cryosphere Exchanges in ANtarctica: Impacts on Climate and the Earth system
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique EU - European Union
Funding text :
This research was supported by OCEAN:ICE, which is co‐funded by the European Union, Horizon Europe Funding Programme for research and innovation under grant agreement Nr. 101060452 and by UK Research and Innovation. OCEAN:ICE Contribution number 11.
Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche
Scientifique de Belgique (F.R.S.‐FNRS) under Grant Number 2.5020.11 and by the Walloon Region. TG was supported by the F.R.S.‐FNRS through a Research Fellowship. JDR was also supported by a UKRI Future Leaders Fellowship under Grant number MR/W011816/1.
Adusumilli, S., Fricker, H., Medley, B., Padman, L., & Siegfried, M. (2020). Interannual variations in meltwater input to the southern ocean from Antarctic ice shelves. Nature Geoscience, 13, 1–5. https://doi.org/10.1038/s41561-020-0616-z
Bell, R. E., Chu, W., Kingslake, J., Das, I., Tedesco, M., Tinto, K. J., et al. (2017). Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature, 544(7650), 344–348. https://doi.org/10.1038/nature22048
Bernales, J., Rogozhina, I., & Thomas, M. (2017). Melting and freezing under Antarctic ice shelves from a combination of ice-sheet modelling and observations. Journal of Glaciology, 63(240), 731–744. https://doi.org/10.1017/jog.2017.42
Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B., & Katsman, C. A. (2013). Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nature Geoscience, 6(5), 376–379. https://doi.org/10.1038/ngeo1767
Bronselaer, B., Winton, M., Griffies, S., Hurlin, W., Rodgers, K., Sergienko, O., et al. (2018). Change in future climate due to Antarctic meltwater. Nature, 564(7734), 53–58. https://doi.org/10.1038/s41586-018-0712-z
Coulon, V. (2024). Kori-ULB [Software]. GitHub repository. https://github.com/VioCoulon/Kori-ULB/tree/OceanIce
Coulon, V., De Rydt, J., Gregov, T., Qin, Q., & Pattyn, F. (2024a). Future freshwater fluxes from the Antarctic ice sheet [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.14162775
Coulon, V., De Rydt, J., Gregov, T., Qin, Q., & Pattyn, F. (2024b). Future freshwater fluxes from the Antarctic ice sheet [Software]. Zenodo. https://doi.org/10.5281/zenodo.14163522
Coulon, V., Klose, A. K., Kittel, C., Edwards, T., Turner, F., Winkelmann, R., & Pattyn, F. (2024). Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model. The Cryosphere, 18(2), 653–681. https://doi.org/10.5194/tc-18-653-2024
Davison, B. J., Hogg, A. E., Gourmelen, N., Jakob, L., Wuite, J., Nagler, T., et al. (2023). Annual mass budget of Antarctic ice shelves from 1997 to 2021. Science Advances, 9(41), eadi0186. https://doi.org/10.1126/sciadv.adi0186
de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R., & Marinov, I. (2014). Cessation of deep convection in the open southern ocean under anthropogenic climate change. Nature Climate Change, 4(4), 278–282. https://doi.org/10.1038/nclimate2132
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg, S. R. M., van den Broeke, M. R., & Moholdt, G. (2013). Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502(7469), 89–92. https://doi.org/10.1038/nature12567
Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H., et al. (2021). Projected land ice contributions to 21st century sea level rise. Nature, 593(7857), 74–82. https://doi.org/10.1038/s41586-021-03302-y
Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., et al. (2019). Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model nemo(v3.6)–elmer/ice(v8.3). Geoscientific Model Development, 12(6), 2255–2283. https://doi.org/10.5194/gmd-12-2255-2019
Fox-Kemper, B., Hewitt, H., Xiao, C., Aeth algeirsdóttir, G., Drijfhout, S., Edwards, T., et al. (2021). Ocean, cryosphere and sea level change [Book Section]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1211–1362). Cambridge University Press. https://doi.org/10.1017/9781009157896.011
Golledge, N., Keller, E., Gomez, N., Naughten, K., Bernales, J., Trusel, L., & Edwards, T. (2019). Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 566(7742), 65–72. https://doi.org/10.1038/s41586-019-0889-9
Gorte, T., Lovenduski, N. S., Nissen, C., & Lenaerts, J. T. M. (2023). Antarctic ice sheet freshwater discharge drives substantial southern ocean changes over the 21st century. Geophysical Research Letters, 50(20), e2023GL104949. https://doi.org/10.1029/2023GL104949
Greene, C. A., Gardner, A. S., Schlegel, N.-J., & Fraser, A. D. (2022). Antarctic calving loss rivals ice-shelf thinning. Nature, 609(7929), 948–953. https://doi.org/10.1038/s41586-022-05037-w
Hausfather, Z., & Peters, G. (2020). 01). Emissions – The ‘business as usual’ story is misleading. Nature, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3
Hellmer, H. H., Kauker, F., Timmermann, R., & Hattermann, T. (2017). The fate of the southern Weddell Sea continental shelf in a warming climate. Journal of Climate, 30(12), 4337–4350. https://doi.org/10.1175/JCLI-D-16-0420.1
Jourdain, N. C., Asay-Davis, X., Hattermann, T., Straneo, F., Seroussi, H., Little, C. M., & Nowicki, S. (2020). A protocol for calculating basal melt rates in the ismip6 Antarctic ice sheet projections. The Cryosphere, 14(9), 3111–3134. https://doi.org/10.5194/tc-14-3111-2020
Kazmierczak, E., Gregov, T., Coulon, V., & Pattyn, F. (2024). A fast and unified subglacial hydrological model applied to Thwaite’s glacier, Antarctica. EGUsphere, 2024, 1–36. https://doi.org/10.5194/egusphere-2024-466
Kingslake, J., Ely, J. C., Das, I., & Bell, R. E. (2017). Widespread movement of meltwater onto and across Antarctic ice shelves. Nature, 544(7650), 349–352. https://doi.org/10.1038/nature22049
Klose, A. K., Coulon, V., Pattyn, F., & Winkelmann, R. (2024). The long-term sea-level commitment from Antarctica. The Cryosphere, 18(9), 4463–4492. https://doi.org/10.5194/tc-18-4463-2024
Lawrence, I. R., Ridout, A. L., Shepherd, A., & Tilling, R. (2023). A simulation of snow on Antarctic sea ice based on satellite data and climate reanalyses. Journal of Geophysical Research: Oceans, 129(1), e2022JC019002. https://doi.org/10.1029/2022jc019002
Lazeroms, W. M. J., Jenkins, A., Rienstra, S. W., & van de Wal, R. S. W. (2019). An analytical derivation of ice-shelf basal melt based on the dynamics of meltwater plumes. Journal of Physical Oceanography, 49(4), 917–939. https://doi.org/10.1175/JPO-D-18-0131.1
Lenaerts, J., Vizcaíno, M., Fyke, J., van Kampenhout, L., & Van den Broeke, M. (2016). Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Climate Dynamics, 47(5–6), 1367–1381. https://doi.org/10.1007/s00382-015-2907-4
Mathiot, P., Jenkins, A., Harris, C., & Madec, G. (2017). Explicit representation and parametrised impacts of under ice shelf seas in the zast coordinate ocean model nemo 3.6. Geoscientific Model Development, 10(7), 2849–2874. https://doi.org/10.5194/gmd-10-2849-2017
Morlighem, M. (2022). Measures bed machine Antarctica, version 3. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/FPSU0V1MWUB6
Morlighem, M., Bondzio, J., Seroussi, H., Rignot, E., Larour, E., Humbert, A., & Rebuffi, S. (2016). Modeling of store gletscher’s calving dynamics, west Greenland, in response to ocean thermal forcing. Geophysical Research Letters, 43(6), 2659–2666. https://doi.org/10.1002/2016GL067695
Mottram, R., Hansen, N., Kittel, C., van Wessem, J. M., Agosta, C., Amory, C., et al. (2021). What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. The Cryosphere, 15(8), 3751–3784. https://doi.org/10.5194/tc-15-3751-2021
Naughten, K. A., De Rydt, J., Rosier, S. H. R., Jenkins, A., Holland, P. R., & Ridley, J. K. (2021). Two-timescale response of a large Antarctic ice shelf to climate change. Nature Communications, 12(1), 1991. https://doi.org/10.1038/s41467-021-22259-0
Nias, I. J., Cornford, S. L., Edwards, T. L., Gourmelen, N., & Payne, A. J. (2019). Assessing uncertainty in the dynamical ice response to ocean warming in the Amundsen Sea embayment, West Antarctica. Geophysical Research Letters, 46(20), 11253–11260. https://doi.org/10.1029/2019GL084941
Nilsson, J., Gardner, A. S., & Paolo, F. S. (2022). Elevation change of the Antarctic ice sheet: 1985 to 2020. Earth System Science Data, 14(8), 3573–3598. https://doi.org/10.5194/essd-14-3573-2022
Otosaka, I. N., Shepherd, A., Ivins, E. R., Schlegel, N.-J., Amory, C., van den Broeke, M. R., et al. (2023). Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth System Science Data, 15(4), 1597–1616. https://doi.org/10.5194/essd-15-1597-2023
Paolo, F. S., Gardner, A. S., Greene, C. A., Nilsson, J., Schodlok, M. P., Schlegel, N.-J., & Fricker, H. A. (2023). Widespread slowdown in thinning rates of west Antarctic ice shelves. The Cryosphere, 17(8), 3409–3433. https://doi.org/10.5194/tc-17-3409-2023
Pattyn, F. (2010). Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth and Planetary Science Letters, 295(3), 451–461. https://doi.org/10.1016/j.epsl.2010.04.025
Pattyn, F. (2017). Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0). The Cryosphere, 11(4), 1–28. https://doi.org/10.5194/tc-11-1-2017
Pattyn, F. (2024). Kori-ULB [Software]. GitHub repository. https://github.com/FrankPat/Kori-dev
Pauling, A. G., Bitz, C. M., Smith, I. J., & Langhorne, P. J. (2016). The response of the southern ocean and Antarctic sea ice to freshwater from ice shelves in an earth system model. Journal of Climate, 29(5), 1655–1672. https://doi.org/10.1175/JCLI-D-15-0501.1
Payne, A., Nowicki, S., Abe-Ouchi, A., Agosta, C., Alexander, P., Albrecht, T., et al. (2021). 08). Future sea level change under cmip5 and cmip6 scenarios from the Greenland and Antarctic ice sheets. Geophysical Research Letters, 48(16), e2020GL091741. https://doi.org/10.1029/2020GL091741
Pelletier, C., Fichefet, T., Goosse, H., Haubner, K., Helsen, S., Huot, P.-V., et al. (2022). PARASO, a circum-Antarctic fully coupled ice-sheet–ocean–sea-ice–atmosphere–land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5. Geoscientific Model Development, 15(2), 553–594. https://doi.org/10.5194/gmd-15-553-2022
Pollard, D., & DeConto, R. M. (2012a). A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica. The Cryosphere, 6(5), 953–971. https://doi.org/10.5194/tc-6-953-2012
Pollard, D., DeConto, R. M., & Alley, R. B. (2015). Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters, 412, 112–121. https://doi.org/10.1016/j.epsl.2014.12.035
Purich, A., & England, M. H. (2023). Projected impacts of antarctic meltwater anomalies over the twenty-first century. Journal of Climate, 36(8), 2703–2719. https://doi.org/10.1175/jcli-d-22-0457.1
Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X., & Winkelmann, R. (2018). Antarctic sub-shelf melt rates via Pico. The Cryosphere, 12(6), 1969–1985. https://doi.org/10.5194/tc-12-1969-2018
Rignot, E., Jacobs, S., Mouginot, J., & Scheuchl, B. (2013). Ice-shelf melting around Antarctica. Science, 341(6143), 266–270. https://doi.org/10.1126/science.1235798
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., & Morlighem, M. (2019). Four decades of Antarctic ice sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences, 116(4), 1095–1103. https://doi.org/10.1073/pnas.1812883116
Sadai, S., Condron, A., DeConto, R., & Pollard, D. (2020). Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming. Science Advances, 6(39), eaaz1169. https://doi.org/10.1126/sciadv.aaz1169
Schloesser, F., Friedrich, T., Timmermann, A., DeConto, R. M., & Pollard, D. (2019). Antarctic iceberg impacts on future southern hemisphere climate. Nature Climate Change, 9(9), 672–677. https://doi.org/10.1038/s41558-019-0546-1
Schwalm, C. R., Glendon, S., & Duffy, P. B. (2020). RCP8.5 tracks cumulative CO2 emissions. Proceedings of the National Academy of Sciences, 117(33), 19656–19657. https://doi.org/10.1073/pnas.2007117117
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., et al. (2020). Ismip6 Antarctica: A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. The Cryosphere, 14(9), 3033–3070. https://doi.org/10.5194/tc-14-3033-2020
Seroussi, H., Pelle, T., Lipscomb, W. H., Abe-Ouchi, A., Albrecht, T., Alvarez-Solas, J., et al. (2024). Evolution of the Antarctic ice sheet over the next three centuries from an ismip6 model ensemble. Earth's Future, 12(9), e2024EF004561. https://doi.org/10.1029/2024EF004561
Siahaan, A., Smith, R. S., Holland, P. R., Jenkins, A., Gregory, J. M., Lee, V., et al. (2022). The Antarctic contribution to 21st-century sea-level rise predicted by the UK earth system model with an interactive ice sheet. The Cryosphere, 16(10), 4053–4086. https://doi.org/10.5194/tc-16-4053-2022
Silvano, A., Rintoul, S. R., Peña-Molino, B., Hobbs, W. R., van Wijk, E., Aoki, S., et al. (2018). Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic bottom water. Science Advances, 4(4), eaap9467. https://doi.org/10.1126/sciadv.aap9467
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., et al. (2020). Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368(6496), 1239–1242. https://doi.org/10.1126/science.aaz5845
Swart, N. C., Martin, T., Beadling, R., Chen, J.-J., Danek, C., England, M. H., et al. (2023). The Southern Ocean freshwater input from Antarctica (Sofia) initiative: Scientific objectives and experimental design. Geoscientific Model Development, 16(24), 7289–7309. https://doi.org/10.5194/gmd-16-7289-2023
Thomas, M., Ridley, J. K., Smith, I. J., Stevens, D. P., Holland, P. R., & Mackie, S. (2023). Future response of Antarctic continental shelf temperatures to ice shelf basal melting and calving. Geophysical Research Letters, 50(18), e2022GL102101. https://doi.org/10.1029/2022GL102101
Trusel, L., Frey, K., Das, S., Karnauskas, K., Munneke, P., Meijgaard, E., & Van den Broeke, M. (2015). Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nature Geoscience, 8(12), 927–932. https://doi.org/10.1038/ngeo2563
Trusel, L., Frey, K. E., Das, S. B., Munneke, P. K., & van den Broeke, M. R. (2013). Satellite-based estimates of Antarctic surface meltwater fluxes. Geophysical Research Letters, 40(23), 6148–6153. https://doi.org/10.1002/2013GL058138
van Wessem, J. M., Steger, C. R., Wever, N., & van den Broeke, M. R. (2021). An exploratory modelling study of perennial firn aquifers in the antarctic peninsula for the period 1979–2016. The Cryosphere, 15(2), 695–714. https://doi.org/10.5194/tc-15-695-2021
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., et al. (2018). Modelling the climate and surface mass balance of polar ice sheets using racmo2 – Part 2: Antarctica (1979–2016). The Cryosphere, 12(4), 1479–1498. https://doi.org/10.5194/tc-12-1479-2018
van Wessem, J. M., Van den Broeke, M., Wouters, B., & Lhermitte, S. (2023). Variable temperature thresholds of melt pond formation on Antarctic ice shelves. Nature Climate Change, 13(2), 1–6. https://doi.org/10.1038/s41558-022-01577-1
Wernecke, A., Edwards, T. L., Nias, I. J., Holden, P. B., & Edwards, N. R. (2020). Spatial probabilistic calibration of a high-resolution Amundsen Sea embayment ice sheet model with satellite altimeter data. The Cryosphere, 14(5), 1459–1474. https://doi.org/10.5194/tc-14-1459-2020
Wilner, J. A., Morlighem, M., & Cheng, G. (2023). Evaluation of four calving laws for Antarctic ice shelves. The Cryosphere, 17(11), 4889–4901. https://doi.org/10.5194/tc-17-4889-2023
Bondzio, J. H., Seroussi, H., Morlighem, M., Kleiner, T., Rückamp, M., Humbert, A., & Larour, E. Y. (2016). Modelling calving front dynamics using a level-set method: Application to Jakobshavn isbræ, west Greenland. The Cryosphere, 10(2), 497–510. https://doi.org/10.5194/tc-10-497-2016
Braithwaite, R. J. (2008). Temperature and precipitation climate at the equilibrium-line altitude of glaciers expressed by the degree-day factor for melting snow. Journal of Glaciology, 54(186), 437–444. https://doi.org/10.3189/002214308785836968
Brotchie, J. F., & Silvester, R. (1969). On crustal flexure. Journal of Geophysical Research, 74(22), 5240–5252. https://doi.org/10.1029/JB074i022p05240
Bueler, E., & Brown, J. (2009). Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model. Journal of Geophysical Research, 114(F3). https://doi.org/10.1029/2008JF001179
Burgard, C., Jourdain, N. C., Reese, R., Jenkins, A., & Mathiot, P. (2022). An assessment of basal melt parameterisations for Antarctic ice shelves. The Cryosphere, 16(12), 4931–4975. https://doi.org/10.5194/tc-16-4931-2022
Coulon, V., Bulthuis, K., Whitehouse, P. L., Sun, S., Haubner, K., Zipf, L., & Pattyn, F. (2021). Contrasting response of west and east Antarctic ice sheets to glacial isostatic adjustment. Journal of Geophysical Research: Earth Surface, 126(7), e2020JF006003. https://doi.org/10.1029/2020JF006003
Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers. Academic Press.
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R., Holden, P. B., et al. (2019). Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature, 566(7742), 58–64. https://doi.org/10.1038/s41586-019-0901-4
Hock, R. (2003). Temperature index melt modelling in mountain areas. Journal of Hydrology, 282(1), 104–115. https://doi.org/10.1016/S0022-1694(03)00257-9
Hock, R. (2005). Glacier melt: A review of processes and their modelling. Progress in Physical Geography: Earth and Environment, 29(3), 362–391. https://doi.org/10.1191/0309133305pp453ra
Huybrechts, P., & de Wolde, J. (1999). The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. Journal of Climate, 12(8), 2169–2188. https://doi.org/10.1175/1520-0442(1999)012<2169:tdrotg>2.0.co;2
Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Delhasse, A., et al. (2021). Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. The Cryosphere, 15(3), 1215–1236. https://doi.org/10.5194/tc-15-1215-2021
Kreuzer, M., Reese, R., Huiskamp, W. N., Petri, S., Albrecht, T., Feulner, G., & Winkelmann, R. (2021). Coupling framework (1.0) for the pism (1.1.4) ice sheet model and the mom5 (5.1.0) ocean model via the pico ice shelf cavity model in an Antarctic domain. Geoscientific Model Development, 14(6), 3697–3714. https://doi.org/10.5194/gmd-14-3697-2021
Le Meur, E., & Huybrechts, P. (1996). A comparison of different ways of dealing with isostasy: Examples from modelling the Antarctic ice sheet during the last glacial cycle. Annals of Glaciology, 23, 309–317. https://doi.org/10.10013/epic.12717.d001
Magand, O., Frezzotti, M., Pourchet, M., Stenni, B., Genoni, L., & Fily, M. (2004). Climate variability along latitudinal and longitudinal transects in East Antarctica. Annals of Glaciology, 39, 351–358. https://doi.org/10.3189/172756404781813961
Martin, P. J., & Peel, D. A. (1978). The spatial distribution of 10 m temperatures in the Antarctic peninsula. Journal of Glaciology, 20(83), 311–317. https://doi.org/10.3189/S0022143000013861
McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239. https://doi.org/10.2307/1268522
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., et al. (2019). Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 13(2), 132–137. https://doi.org/10.1038/s41561-019-0510-8
Nias, I. J., Nowicki, S., Felikson, D., & Loomis, B. (2023). Modeling the Greenland ice sheet’s committed contribution to sea level during the 21st century. Journal of Geophysical Research: Earth Surface, 128(2), e2022JF006914. https://doi.org/10.1029/2022JF006914
Osher, S., & Fedkiw, R. P. (2001). Level set methods: An overview and some recent results. Journal of Computational Physics, 169(2), 463–502. https://doi.org/10.1006/jcph.2000.6636
Pollard, D., & DeConto, R. M. (2012b). Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geoscientific Model Development, 5, 1273–1295. https://doi.org/10.5194/gmd-5-1273-2012
Pollard, D., & DeConto, R. M. (2020). Improvements in one-dimensional grounding-line parameterizations in an ice-sheet model with lateral variations (psuice3d v2.1). Geoscientific Model Development, 13(12), 6481–6500. https://doi.org/10.5194/gmd-13-6481-2020
Reijmer, C. H., van den Broeke, M. R., Fettweis, X., Ettema, J., & Stap, L. B. (2012). Refreezing on the Greenland ice sheet: A comparison of parameterizations. The Cryosphere, 6(4), 743–762. https://doi.org/10.5194/tc-6-743-2012
Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., & Hindmarsh, R. C. A. (2015). Potential sea level rise from Antarctic ice-sheet instability constrained by observations. Nature, 528(7580), 115–118. https://doi.org/10.1038/nature16147
Schoof, C. (2007). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research, 112(F3), 1–19. https://doi.org/10.1029/2006JF000664
Seguinot, J. (2013). Spatial and seasonal effects of temperature variability in a positive degree-day glacier surface mass-balance model. Journal of Glaciology, 59(218), 1202–1204. https://doi.org/10.3189/2013JoG13J081
Shapiro, N. M., & Ritzwoller, M. H. (2004). Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica. Earth and Planetary Science Letters, 223(1–2), 213–224. https://doi.org/10.1016/j.epsl.2004.04.011
Sun, S., Cornford, S. L., Moore, J. C., Gladstone, R., & Zhao, L. (2017). Ice shelf fracture parameterization in an ice sheet model. The Cryosphere, 11(6), 2543–2554. https://doi.org/10.5194/tc-11-2543-2017
Tsai, C.-Y., Forest, C., & Pollard, D. (2020). The role of internal climate variability in projecting Antarctica’s contribution to future sea-level rise. Climate Dynamics, 55(7–8), 1875–1892. https://doi.org/10.1007/s00382-020-05354-8
Whitehouse, P. L., Wiens, D. A., Gomez, N., & King, M. A. (2019). Solid earth change and the evolution of the Antarctic ice sheet. Nature Communications, 10, 1–14. https://doi.org/10.1038/s41467-018-08068-y
Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., & Levermann, A. (2011). The Potsdam parallel ice sheet model (pism-pik) – Part 1: Model description. The Cryosphere, 5(3), 715–726. https://doi.org/10.5194/tc-5-715-2011