genetics; genomics; human genetics; neuromuscular diseases; Connectin; TTN protein, human; Humans; Connectin/genetics; DNA Copy Number Variations/genetics; Muscle, Skeletal/pathology; Mutation/genetics; Phenotype; Distal Myopathies/genetics; Distal Myopathies; DNA Copy Number Variations; Muscle, Skeletal; Mutation; Genetics (clinical)
Abstract :
[en] [en] BACKGROUND: Titinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype-phenotype associations.
METHODS: Our study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients' muscles and performed genotype-phenotype inheritance association study by combining the clinical and biological data of these eight families.
RESULTS: Seven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype-phenotype associations of titinopathies.
CONCLUSION: Identifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype-phenotype associations of titinopathies, mainly distal myopathy in most of the patients.
Disciplines :
Pediatrics
Author, co-author :
Perrin, Aurélien ; Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, Montpellier, France mireille.cossee@inserm.fr aurelien.perrin@ext.inserm.fr ; PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
Métay, Corinne; Unité Fonctionnelle de Cardiogénétique et Myogénétique moléculaire et cellulaire, Centre de Génétique Moléculaire et Chromosomique, Groupe Hospitalier La Pitié-Salpêtrière-Charles Foix, Paris, France ; Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
Savarese, Marco ; Tampere Neuromuscular Center, Folkhälsan Research Center, Helsinki, Finland
Ben Yaou, Rabah; Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
Demidov, German; Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tubingen, Germany
Nelson, Isabelle; Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
Solé, Guilhem; CHU de Bordeaux, AOC National Reference Center for Neuromuscular Disorders, Bordeaux, France
Péréon, Yann; Department of Clinical Neurophysiology, Reference Centre for Neuromuscular Diseases AOC, Filnemus, Euro-NMD, CHU Nantes, Nantes Université, Place Alexis-Ricordeau, Nantes, France
Bertini, Enrico Silvio ; Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children Research Hospital, IRCCS, Rome, Italy
Fattori, Fabiana; Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children Research Hospital, IRCCS, Rome, Italy
D'Amico, Adele; Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children Research Hospital, IRCCS, Rome, Italy
Ricci, Federica; Division of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
Ginsberg, Mira; Department of Pediatric Neurology, Wolfson Medical Center, Holon, Israel
Seferian, Andreea; Institut I-MOTION, Hôpital Armand Trousseau, Paris, France
Boespflug-Tanguy, Odile; Institut I-MOTION, Hôpital Armand Trousseau, Paris, France ; UMR 1141, INSERM, NeuroDiderot Université Paris Cité and APHP, Neuropédiatrie, French Reference Center for Leukodystrophies, LEUKOFRANCE, Hôpital Robert Debré, Paris, France
Servais, Laurent ; Université de Liège - ULiège > Département des sciences cliniques ; Institut I-MOTION, Hôpital Armand Trousseau, Paris, France ; MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
Chapon, Françoise; Département de pathologie, Centre de Compétence des Maladies Neuromusculaires, Centre Hospitalier Universitaire de Caen, Caen, France
Lagrange, Emmeline; Centre de Compétences des Maladies Neuro Musculaires, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
Gaudon, Karen; Unité Fonctionnelle de Cardiogénétique et Myogénétique moléculaire et cellulaire, Centre de Génétique Moléculaire et Chromosomique, Groupe Hospitalier La Pitié-Salpêtrière-Charles Foix, Paris, France
Bloch, Adrien; Unité Fonctionnelle de Cardiogénétique et Myogénétique moléculaire et cellulaire, Centre de Génétique Moléculaire et Chromosomique, Groupe Hospitalier La Pitié-Salpêtrière-Charles Foix, Paris, France
Ghanem, Robin; Unité Fonctionnelle de Cardiogénétique et Myogénétique moléculaire et cellulaire, Centre de Génétique Moléculaire et Chromosomique, Groupe Hospitalier La Pitié-Salpêtrière-Charles Foix, Paris, France
Guyant-Maréchal, Lucie; Department of Neurophysiology, Rouen University Hospital, Rouen, France
Johari, Mridul; Tampere Neuromuscular Center, Folkhälsan Research Center, Helsinki, Finland ; Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
Van Goethem, Charles; Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, Montpellier, France ; Montpellier BioInformatique pour le Diagnostic Clinique (MOBIDIC), Plateau de Médecine Moléculaire et Génomique (PMMG), CHU Montpellier, Montpellier, France
Fardeau, Michel; Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
Morales, Raul Juntas; Department of Neurology, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
Genetti, Casie A; Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Marttila, Minttu; Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA ; HiLIFE Helsinki Institute of Life Science, Tukholmankatu 8, FI-00014, University of Helsinki, Helsinki, Finland
Koenig, Michel; Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, Montpellier, France ; PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
Beggs, Alan H ; Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Udd, Bjarne ; Tampere Neuromuscular Center, Folkhälsan Research Center, Helsinki, Finland
Bonne, Gisèle; Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
Cossée, Mireille ; Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, Montpellier, France mireille.cossee@inserm.fr aurelien.perrin@ext.inserm.fr ; PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
French Muscular Dystrophy Association EU - European Union
Funding text :
This work was funded by AFM 21381 and 24259 grants (the French Muscular Dystrophy Association (AFM-Téléthon)); the Délégation à la Recherche Clinique et à l’Innovation du Groupement de Coopération Sanitaire de la Mission d’Enseignement, de Recherche, de Référence et d’Innovation (DRCI-GCS-MERRI) de Montpellier-Nîmes and the Solve-RD Project have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 779257. Analysis of family H was supported by Muscular Dystrophy Association (USA) grant MDA602235, Boston Children’s Hospital IDDRC Molecular Genetics Core Facility funded by P50HD105351 from the National Institutes of Health of USA, the Boston Children’s Hospital CRDC Initiative and by a sponsored research agreement with GeneDx. Some coauthors are members of the ERN NMD Network (AD'A, FF, OB-T, MS, RBY, IN, GS, YP, ESB, AS, MJ, BU, GB).
Linke WA, Hamdani N. Gigantic business: Titin properties and function through thick and thin. Circ Res 2014;114:1052–68.
Savarese M, Maggi L, Vihola A, et al. Interpreting genetic variants in Titin in patients with muscle disorders. JAMA Neurol 2018;75:557–65.
Savarese M, Sarparanta J, Vihola A, et al. Increasing role of Titin mutations in neuromuscular disorders. J Neuromuscul Dis 2016;3:293–308.
Valipakka S, Savarese M, Johari M, et al. Copy number variation analysis increases the diagnostic yield of NGS studies in muscle disease patients. Neuromuscular Disorders 2017;27:S193–4.
Roggenbuck J, Rich K, Morales A, et al. A novel TTN deletion in a family with skeletal myopathy, facial weakness, and dilated cardiomyopathy. Mol Genet Genomic Med 2019;7:e924.
Perrin A, Juntas Morales R, Chapon F, et al. Novel dominant distal titinopathy phenotype associated with copy number variation. Ann Clin Transl Neurol 2021;8:1906–12.
Sagath L, Lehtokari V-L, Välipakka S, et al. An extended targeted copy number variation detection array including 187 genes for the diagnostics of neuromuscular disorders. J Neuromuscul Dis 2018;5:307–14.
Välipakka S, Savarese M, Sagath L, et al. Improving copy number variant detection from sequencing data with a combination of programs and a predictive model. J Mol Diagn 2020;22:40–9.
Zenagui R, Lacourt D, Pegeot H, et al. A reliable targeted next-generation sequencing strategy for diagnosis of myopathies and muscular dystrophies, especially for the giant Titin and Nebulin genes. J Mol Diagn 2018;20:533–49.
Evilä A, Arumilli M, Udd B, et al. Targeted next-generation sequencing assay for detection of mutations in primary myopathies. Neuromuscul Disord 2016;26:7–15.
Marttila M, Win W, Al-Ghamdi F, et al. Myl2-associated congenital fiber-type disproportion and cardiomyopathy with variants in additional neuromuscular disease genes; the dilemma of panel testing. Cold Spring Harb Mol Case Stud 2019;5:a004184.
Rockowitz S, LeCompte N, Carmack M, et al. Children’s rare disease cohorts: an integrative research and clinical genomics initiative. NPJ Genom Med 2020;5:29.
Perrin A, Juntas Morales R, Rivier F, et al. The importance of an integrated genotype-phenotype strategy to unravel the molecular bases of titinopathies. Neuromuscul Disord 2020;30:877–87.
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-Seq Aligner. Bioinformatics 2013;29:15–21.
Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013;14:178–92.
Garrido-Martín D, Palumbo E, Guigó R, et al. Ggsashimi: Sashimi plot revised for browser- and annotation-independent splicing visualization. PLoS Comput Biol 2018;14:e1006360.
Juntas Morales R, Perrin A, Solé G, et al. An integrated clinical-biological approach to identify Interindividual variability and atypical phenotype-genotype correlations in myopathies: experience on A cohort of 156 families. Genes (Basel) 2021;12:1199.
Demidov G, Sturm M, Ossowski S. ClinCNV: multi-sample germline CNV detection in NGS data. Bioinformatics [Preprint] 2022.
Fawcett KA, Demidov G, Shrine N, et al. Exome-wide analysis of copy number variation shows Association of the human Leukocyte antigen region with asthma in UK Biobank. BMC Med Genomics 2022;15:119.
Plagnol V, Curtis J, Epstein M, et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 2012;28:2747–54.
Chen X, Schulz-Trieglaff O, Shaw R, et al. Manta: rapid detection of structural variants and Indels for Germline and cancer sequencing applications. Bioinformatics 2016;32:1220–2.
Luis NM, Schnorrer F. Mechanobiology of muscle and myofibril Morphogenesis. Cells Dev 2021;168:203760.
Sagath L, Lehtokari V-L, Välipakka S, et al. Congenital asymmetric distal myopathy with hemifacial weakness caused by a heterozygous large de novo mosaic deletion in Nebulin. Neuromuscul Disord 2021;31:539–45.
Kiiski KJ, Lehtokari V-L, Vihola AK, et al. Dominantly inherited distal Nemaline/ cap myopathy caused by a large deletion in the Nebulin gene. Neuromuscul Disord 2019;29:97–107.
Hackman P, Vihola A, Haravuori H, et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein Titin. Am J Hum Genet 2002;71:492–500.
Palmio J, Leonard-Louis S, Sacconi S, et al. Expanding the importance of HMERF titinopathy: new mutations and clinical aspects. J Neurol 2019;266:680–90.
Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, et al. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 2009;89:1217–67.
Lange S, Xiang F, Yakovenko A, et al. Cell biology: the kinase domain of Titin controls muscle gene expression and protein turnover. Science 2005;308:1599–603.
Lange S, Pinotsis N, Agarkova I, et al. The M-band: the underestimated part of the sarcomere. Biochim Biophys Acta Mol Cell Res 2020;1867:118440.
Linke WA. Titin gene and protein functions in passive and active muscle. Annu Rev Physiol 2018;80:389–411.
Averdunk L, Donkervoort S, Horn D, et al. Recognizable pattern of arthrogryposis and congenital myopathy caused by the recurrent TTN metatranscript-only C.3997411T>G splice variant. Neuropediatrics 2022;53:309–20.
McDermott H, Henderson A, Robinson HK, et al. Novel compound heterozygous TTN variants as a cause of severe neonatal congenital contracture syndrome without cardiac involvement diagnosed with rapid trio Exome sequencing. Neuromuscul Disord 2021;31:783–7.
Savarese M, Vihola A, Oates EC, et al. Genotype–phenotype correlations in recessive titinopathies. Genet Med 2020;22:2029–40.
Bryen SJ, Ewans LJ, Pinner J, et al. Recurrent TTN metatranscript-only C.39974–11T>G splice variant associated with autosomal recessive arthrogryposis multiplex congenita and myopathy. Hum Mutat 2020;41:403–11.
Fernández-Marmiesse A, Carrascosa-Romero MC, Alfaro Ponce B, et al. Homozygous truncating mutation in prenatally expressed skeletal isoform of TTN gene results in arthrogryposis multiplex congenita and myopathy without cardiac involvement. Neuromuscul Disord 2017;27:188–92.
Oates EC, Jones KJ, Donkervoort S, et al. Congenital titinopathy: comprehensive characterization and pathogenic insights. Ann Neurol 2018;83:1105–24.
Di Feo MF, Lillback V, Jokela M, et al. The crucial role of Titin in fetal development: recurrent miscarriages and bone, heart and muscle anomalies characterise the severe end of Titinopathies spectrum. J Med Genet 2023;60:866–73.
Xie Y, Li H, Luo X, et al. IBS 2.0: an upgraded illustrator for the visualization of biological sequences. Nucleic Acids Res 2022;50:W420–6.