Abdominal obesity; glucocorticoids.; 11β-hydroxysteroid dehydrogenase type 1; cortisol; metabolic disturbances
Abstract :
[fr] L’obésité abdominale joue un rôle central dans le développement d’un syndrome métabolique.
Certaines similitudes entre le syndrome métabolique et le syndrome de Cushing
ont fait rechercher si un excès tissulaire en glucocorticoïdes, malgré des taux sériques
normaux, ne pouvait pas jouer un rôle. La 11β−hydroxystéroïde déshydrogénase de
type 1 (11HSD1), une enzyme qui convertit la cortisone (inactive) en cortisol (actif) dans
les tissus cibles, se révèle d’un grand intérêt. En effet, plusieurs études ont montré une
augmentation d’expression et d’activité de cette enzyme en présence d’une obésité. Des
données expérimentales obtenues sur des rongeurs mettent en évidence un lien direct
entre une augmentation d’activité de la 11HSD1 et l’apparition d’anomalies métaboliques.
De plus, le profil métabolique favorable des souris KO pour la 11HSD1 démontre l’intérêt
d’une inhibition spécifique de cette enzyme pour corriger les anomalies métaboliques
associées à l’obésité. Le développement d’inhibiteurs spécifiques de la 11HSD1 est en
cours et les résultats obtenus sur les rongeurs sont prometteurs avec une amélioration
des profils glucidique et lipidique. Le développement d’inhibiteurs spécifiques de la
11HSD1 ouvre des perspectives intéressantes dans le traitement du syndrome métabolique
ou du diabète de type 2 associés à l’obésité abdominale en clinique humaine [en] Abdominal obesity plays a key role in the development of metabolic syndrome. Similarities
between metabolic syndrome and Cushing disease suggest that excessive local tissue
exposition to glucocorticoids, despite normal circulating plasma levels, might contribute
to the pathophysiology of metabolic syndrome. To this respect, 11β-hydroxysteroid
dehydrogenase type 1 (11HSD1), the enzyme which converts cortisone (inactive) to cortisol
(active) in target tissues, raises much interest. Indeed, several studies showed both
increased expression and activity of this enzyme in adipose tissues in presence of obesity.
Even more striking, experimental data in rodents showed a direct link between increased
11HSD1 activity and the development of metabolic abnormalities. Furthermore, studies
in mice KO for 11HSD1 confirmed the potential of inhibiting this enzyme to attenuate
metabolic abnormalities related to visceral adiposity. Selective inhibitors of 11HSD1 are
currently in development, and preliminary results obtained in rodents appear promising,
with significant improvements in glucose and lipid profiles. The development of potent
and selective 11HSD1 inhibitors may open new prospects in the treatment of metabolic
syndrome or type 2 diabetes associated with abdominal obesity in humans.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Iovino, A.
Scheen, André ; Université de Liège - ULiège > Département des sciences cliniques > Diabétologie, nutrition et maladie métaboliques - Médecine interne générale
Language :
French
Title :
La 11β-hydroxystéroïde déshydrogénase de type 1 – 1re partie Rôle de l’exposition tissulaire au cortisol dans le risque métabolique lié à l’obésité
Alternative titles :
[en] 11β-hydroxysteroid dehydrogenase type 1– First part Role of cortisol tissue exposure in the metabolic risk associated with obesity
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Després JP. Is visceral obesity the cause of the metabolic syndrome? Ann Med 2006;38:52-63.
Anagnostis P, Athyros VG, Tziomalos K, et al. Clinical review. The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab 2009;94:2692-2701
Björntorp P, Rosmond R. Obesity and cortisol. Nutrition 2000;16:924-936
Ljung T, Ottosson M, Ahlberg AC, et al. Central and peripheral glucocorticoid receptor function in abdominal obesity. J Endocrinol Invest 2002;25:229-235 (Pubitemid 34295877)
Tomlinson JW, Walker EA, Bujalska IJ, et al. 11β-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 2004;25:831-866 (Pubitemid 39366049)
Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect "Cushing's disease of the omentum"? Lancet 1997;349:1210-1213
Tomlinson JW, Stewart PM. "Cushing's disease of the omentum" - fact or fiction? J Endocrinol Invest 2004; 27:171-174
Vantyghem M-C, Marcelli-Tourvieille S, Defrance F, et al. 11β-hydroxystéroïde déshydrogénases. Avancées récentes. Ann Endocrinol (Paris) 2007;68:349-356
Müssig K, Remer T, Haupt A, et al. 11beta-hydroxysteroid dehydrogenase 2 activity is elevated in severe obesity and negatively associated with insulin sensitivity. Obesity (Silver Spring) 2008;16:1256-1260 (Pubitemid 351770515)
Walker BR, Andrew R. Tissue production of cortisol by 11β-hydroxysteroid dehydrogenase type 1 and metabolic disease. Ann NY Acad Sci 2006;1083:165-184
Bujalska IJ, Walker EA, Hewison M, et al. A switch in dehydrogenase to reductase activity of 11β-hydroxysteroid dehydrogenase type 1 upon differentiation of human omental adipose stromal cells. J Clin Endocrinol Metab 2002;87:1205-1210 (Pubitemid 36121089)
Stulnig TM, Waldhäusl W. 11β-Hydroxysteroid dehydrogenase Type 1 in obesity and Type 2 diabetes. Diabetologia 2004;47:1-11. (Pubitemid 38141933)
Stimson RH, Andersson J, Andrew R, et al. Cortisol release from adipose tissue by 11β-hydroxysteroid dehydrogenase type 1 in humans. Diabetes 2009;58:46-53.
Bujalska IJ, Draper N, Michailidou Z, et al. Hexose-6-phosphate dehydrogenase confers oxo-reductase activity upon 11 beta-hydoxysteroid dehydrogenase type 1. J Mol Endocrinol 2005;34:675-684 (Pubitemid 40903593)
Iwasaki Y, Takayasu S, Nishiyama M, et al. Is the metabolic syndrome an intracellular Cushing state? Effects of multiple humoral factors on the transcriptional activity of the hepatic glucocorticoid-activating enzyme (11β-hydroxysteroid dehydrogenase type 1) gene. Mol Cell Endocrinol 2008;285:10-18
Nieuwenhuizen AG, Rutters F. The hypothalamic-pituitary-adrenal-axis in the regulation of energy balance. Physiol Behav 2008;94:169-177
Walker BR. Extra-adrenal regeneration of glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1: physiological regulator and pharmacological target for energy partitioning. Proc Nutr Soc 2007;66:1-8.
Berger J, Tanen M, Elbrecht A, et al. Peroxisome proliferator-activated receptor-gamma ligands inhibit adipocyte 11beta-hydroxysteroid dehydrogenase type 1 expression and activity. J Biol Chem 2001;276:12629-12635
Wake DJ, Stimson RH, Tan GD, et al. Effects of peroxisome proliferator-activated receptor-α and -γ agonists on 11β-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue in men. J Clin Endocrinol Metab 2007;92:1848-1856
Morton NM, Seckl JR. 11beta-hydroxysteroid dehydrogenase type 1 and obesity. Front Horm Res 2008;36:146-164
Swali A, Walker EA, Lavery GG, et al. 11beta-Hydroxysteroid dehydrogenase type 1 regulates insulin and glucagon secretion in pancreatic islets. Diabetologia 2008;51:2003-2011
Boyle CD, Kowalski TJ. 11beta-hydroxysteroid dehydrogenase type 1 inhibitors: a review of recent patents. Exp Opin Ther Pat 2009;19:801-825
Livingstone DE, Walker BR. Is 11beta-hydroxysteroid dehydrogenase type 1 a therapeutic target? Effects of carbenoxolone in lean and obese Zucker rats. J Pharmacol Exp Ther 2003;305:167-172
Stewart PM, Edwards CR. The cortisol-cortisone shuttle and hypertension. J Steroid Biochem Mol Biol 1991;40:501-509
Latif SA, Pardo HA, Hardy MP, et al. Endogenous selective inhibitors of 11β-hydroxysteroid dehydrogenase isoforms 1 and 2 of adrenal origin. Mol Cell Endocrinol 2005;243:43-50. (Pubitemid 41572277)
Diederich S, Grossmann C, Hanke B, et al. In the search for specific inhibitors of human 11β-hydroxysteroid-dehydrogenases (11β-HSDs): chenodeoxycholic acid selectively inhibits 11β-HSD-I. Eur J Endocrinol 2000;142:200-207
Alberts P, Engblom L, Edling N, et al. Selective inhibition of 11β-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia 2002;45:1528-1532 (Pubitemid 35352046)
Alberts P, Nilsson C, Selén G, et al. Selective inhibition of 11β-hydroxysteroid dehydrogenase type 1 improves hepatic insulin sensitivity in hyperglycaemic mice strains. Endocrinology 2003;144:4755-4762 (Pubitemid 37378389)
Sundbom M, Kaiser C, Björkstrand E, et al. Inhibition of 11betaHSD1 with the S-phenylethyl aminothiazolone BVT116429 increases adiponectin concentrations and improves glucose homeostasis in diabetic KKAy mice. BMC Pharmacol 2008;8:3.
Hermanowski-Vosatka A, Balkovec JM, Cheng K, et al. 11beta-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med 2005;202:517-527 (Pubitemid 41186950)
Lloyd DJ, Helmering J, Cordover D, et al. Antidiabetic effects of 11beta-HSD1 inhibition in a mouse model of combined diabetes, dyslipidaemia and atherosclerosis. Diabetes Obes Metab 2009;11:688-699
Véniant MM, Hale C, Komorowski R, et al. Time of the day for 11beta-HSD1 inhibition plays a role in improving glucose homeostasis in DIO mice. Diabetes Obes Metab 2009;11:109-117
Berthiaume M, Laplante M, Festuccia WT, et al. Additive action of 11beta-HSD1 inhibition and PPAR-gamma agonism on hepatic steatosis and triglyceridemia in diet-induced obese rats. Int J Obes (Lond) 2009;33:601-604
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.