[en] Photodynamic therapy (PDT) is a treatment for cancer and for certain benign conditions that is based on the use of a photosensitizer and light to produce reactive oxygen species in cells. Many of the photosensitizers currently used in PDT localize in different cell compartments such as mitochondria, lysosomes, endoplasmic reticulum and generate cell death by triggering necrosis and/or apoptosis. Efficient cell death is observed when light, oxygen and the photosensitizer are not limiting ("high dose PDT"). When one of these components is limiting ("low dose PDT"), most of the cells do not immediately undergo apoptosis or necrosis but are growth arrested with several transduction pathways activated. This commentary will review the mechanism of apoptosis and growth arrest mediated by two important PDT agents. i.e. pyropheophorbide and hypericin. (C) 2003 Elsevier Inc. All rights reserved.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Piette, Jacques ; Université de Liège - ULiège > Département des sciences de la vie > Virologie - Immunologie
Volanti, Cédric ; Université de Liège - ULiège > Département des Sciences de la vie > Virologie et Immunologie
Vantieghem, Annelies; Katholieke Universiteit Leuven - KUL > Division of Bichemistry
Matroule, Jean-Yves; Université de Liège - ULiège > Département des Sciences de la Vie > Virologie et immunologie
Habraken, Yvette ; Université de Liège - ULiège > Département des Sicences de la vie > Virologie - Immunologie
Agostinis, Patricia; Katholieke Universiteit Leuven - KUL > Department of Molecular Cell Biology > Laboratory for Pharmaceutical Biology
Language :
English
Title :
Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers
Publication date :
15 October 2003
Journal title :
Biochemical Pharmacology
ISSN :
0006-2952
eISSN :
1873-2968
Publisher :
Pergamon-Elsevier Science Ltd, Oxford, United Kingdom
Wilson, B.C., Photodynamic therapy for cancer: Principles (2002) Can. J. Gastroenterol., 16, pp. 393-396
Hopper, C., Photodynamic therapy: A clinical reality in the treatment of cancer (2000) Lancet Oncol., 1, pp. 212-219
Rechtman, E., Ciulla, T.A., Criswell, M.H., Pollack, A., Harris, A., An update on photodynamic therapy in age-related macular degeneration (2002) Expert Opin. Pharmacother., 3, pp. 931-938
Niedre, M., Patterson, M.S., Wilson, B.C., Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo (2002) Photochem. Photobiol., 75, pp. 382-391
Girotti, A.W., Lipid hydroperoxide generation, turnover, and effector action in biological systems (1998) J. Lipid Res., 39, pp. 1529-1542
Wright, A., Bubb, W.A., Hawkins, C.L., Davies, M.J., Singlet oxygen-mediated protein oxidation: Evidence for the formation of reactive side chain peroxides on tyrosine residues (2002) Photochem. Photobiol., 76, pp. 35-46
Ravanat, J.L., Di Mascio, P., Martinez, G.R., Medeiros, M.H., Cadet, J., Singlet oxygen induces oxidation of cellular DNA (2000) J. Biol. Chem., 275, pp. 40601-40604
Sharman, W.M., Allen, C.M., Van Lier, J.E., Photodynamic therapeutics: Basic principles and clinical applications (1999) DDT, 4, pp. 507-517
Agostinis, P., Vantieghem, A., Merlevede, W., De Witte, P.A., Hypericin in cancer treatment: More light on the way (2002) Int. J. Biochem. Cell Biol., 34, pp. 221-241
Morton, C.A., The emerging role of 5-ALA-PDT in dermatology: Is PDT superior to standard treatments? (2002) J. Dermatolog. Treat., 13 (SUPPL. 1), pp. 25-S29
Jeffes, E.W., Levulan: The first approved topical photosensitizer for the treatment of actinic keratosis (2002) J. Dermatolog. Treat., 13 (SUPPL. 1), pp. 19-S23
Oleinick, N.O., Morris, R.L., Belichenko, The role of apoptosis in response to photodynamic therapy: What, where, why and how (2002) Photochem. Photobiol. Sci, 1, pp. 1-21
Cecic, I., Korbelik, M., Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors (2002) Cancer Lett., 183, pp. 43-51
Granville, D.J., McManus, B.M., Hunt, D.W., Photodynamic therapy: Shedding light on the biochemical pathways regulating porphyrin-mediated cell death (2001) Histol. Histopathol., 16, pp. 309-317
Klotz, L.O., Fritsch, C., Briviba, K., Tsacmacidis, M., Schliess, F., Sies, H., Activation of JNK and p38 but not ERK MAP kinases in human skin cells by 5-aminolevulinate-photodynamic therapy (1998) Cancer Res., 58, pp. 4297-4300
Vermes, I., Haanen, C., Steffens-Nakken, H., Reutelingsperger, C., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled annexin V (1995) J. Immunol. Methods, 184, pp. 39-51
Chiu, S., Evans, H.H., Lam, M., Nieminen, A., Oleinick, N.L., Phthalocyanine 4 photodynamic therapy-induced apoptosis of mouse L5178Y-R cells results from a delayed but extensive release of cytochrome c from mitochondria (2001) Cancer Lett., 165, pp. 51-58
Reiners, J.J.Jr., Caruso, J.A., Mathieu, P., Chelladurai, B., Yin, X.M., Kessel, D., Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage (2002) Cell Death Differ., 9, pp. 934-944
Li, Q., Verma, I.M., NF-kappaB regulation in the immune system (2002) Nat. Rev. Immunol., 2, pp. 725-734
Amit, S., Ben-Neriah, Y., NF-kappaB activation in cancer: A challenge for ubiquitination- and proteasome-based therapeutic approach (2003) Semin. Cancer Biol., 13, pp. 15-28
Ghosh, S., Karin, M., Missing pieces in the NF-kappaB puzzle (2002) Cell, 109, pp. 81-S96
Matroule, J.Y., Bonizzi, G., Morliere, P., Paillous, N., Santus, R., Bours, V., Piette, J., Pyropheophorbide - A methyl ester-mediated photosensitization activates transcription factor NF-kappaB through the interleukin-1 receptor-dependent signaling pathway (1999) J. Biol. Chem., 274, pp. 2988-3000
Li, X., Massa, P.E., Hanidu, A., Peet, G.W., Aro, P., Savitt, A., Mische, S., Marcu, K.B., IKKalpha, IKKbeta, and NEMO/IKKgamma are each required for the NF-kappa B-mediated inflammatory response program (2002) J. Biol. Chem., 277, pp. 45129-45140
Matroule, J.Y., Carthy, C.M., Granville, D.J., Jolois, O., Hunt, D.W., Piette, J., Mechanism of colon cancer cell apoptosis mediated by pyropheophorbide - A methylester photosensitization (2000) Oncogene, 20, pp. 4070-4084
Vantieghem, A., Assefa, Z., Vandenabeele, P., Declercq, W., Courtois, S., Vandenheede, J.R., Merlevede, W., Agostinis, P., Hypericin-induced photosensitization of HeLa cells leads to apoptosis or necrosis. Involvement of cytochrome c and procaspase-3 activation in the mechanism of apoptosis (1998) FEBS Lett., 440, pp. 19-24
Assefa, Z., Vantieghem, A., Declercq, W., Vandenabeele, P., Vandenheede, J.R., Merlevede, W., De Witte, P., Agostinis, P., The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin (1999) J. Biol. Chem., 274, pp. 8788-8796
Vantieghem, A., Xu, Y., Declercq, W., Vandenabeele, P., Denecker, G., Vandenheede, J.R., Merlevede, W., Agostinis, P., Different pathways mediate cytochrome c release after photodynamic therapy with hypericin (2001) Photochem. Photobiol., 74, pp. 133-142
Vantieghem, A., Xu, Y., Assefa, Z., Piette, J., Vandenheede, J.R., Merlevede, W., De Witte, P.A., Agostinis, P., Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis (2002) J. Biol. Chem., 277, pp. 37718-37731
Fadeel, B., Zhivotovsky, B., Orrenius, S., All along the watchtower: On the regulation of apoptosis regulators (1999) FASEB J., 13, pp. 1647-1657
Kim, H.R., Luo, Y., Li, G., Kessel, D., Enhanced apoptotic response to photodynamic therapy after bcl-2 transfection (1999) Cancer Res., 59, pp. 3429-3432
Kessel, D., Castelli, M., Evidence that bcl-2 is the target of three photosensitizers that induce a rapid apoptotic response (2001) Photochem. Photobiol., 74, pp. 318-322
Xue, L.Y., Chiu, S.M., Oleinick, N.L., Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4 (2001) Oncogene, 20, pp. 3420-3427
Pathan, N., Aime-Sempe, C., Kitada, S., Basu, A., Haldar, S., Reed, J.C., Microtubule-targeting drugs induce bcl-2 phosphorylation and association with Pin1 (2001) Neoplasia, 3, pp. 550-559
Blagosklonny, M.V., Unwinding the loop of Bcl-2 phosphorylation (2001) Leukemia, 15, pp. 869-874
Ruvolo, P.P., Deng, X., May, W.S., Phosphorylation of Bcl2 and regulation of apoptosis (2001) Leukemia, 15, pp. 515-522
Deng, X., Xiao, L., Lang, W., Gao, F., Ruvolo, P., May, W.S.Jr., Novel role for JNK as a stress-activated Bcl2 kinase (2001) J. Biol. Chem., 276, pp. 23681-23688
Yamamoto, K., Ichijo, H., Korsmeyer, S.J., BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M (1999) Mol. Cell Biol., 19, pp. 8469-8478
Haldar, S., Basu, A., Croce, C.M., Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells (1998) Cancer Res., 58, pp. 1609-1615