[en] Gene therapy has brought tremendous hope for patients with severe life-threatening monogenic diseases. Although studies have shown the efficacy of gene therapy, serious adverse events have also emerged, including thrombotic microangiopathy (TMA) following viral vector-based gene therapy. In this review, we briefly summarize the concept of gene therapy, and the immune response triggered by viral vectors. We also discuss the incidence, presentation, and potential underlying mechanisms, including complement activation, of gene therapy-associated TMA. Further studies are needed to better define the pathogenesis of this severe complication of gene therapy, and the optimal measures to prevent it.
Disciplines :
Pediatrics
Author, co-author :
Schwotzer, Nora; Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
El Sissy, Carine; Department of Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France ; Paris University, Paris, France
Desguerre, Isabelle; Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, Paris, France
Frémeaux-Bacchi, Véronique; Department of Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France ; Paris University, Paris, France
Servais, Laurent ; Université de Liège - ULiège > Département des sciences cliniques ; MDUK Oxford Neuromuscular Center and NIHR Oxford Biomedical Research Center, University of Oxford, Oxford, UK
Fakhouri, Fadi; Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
Language :
English
Title :
Thrombotic Microangiopathy as an Emerging Complication of Viral Vector-Based Gene Therapy.
High, K.A., Roncarolo, M.G., Gene therapy. N Engl J Med 381 (2019), 455–464, 10.1056/NEJMra1706910.
Servais, L., Horton, R., Saade, D., Bonnemann, C., Muntoni, F., 261st ENMC workshop study group. 261st ENMC International Workshop: Management of safety issues arising following AAV gene therapy. 17th-19th June 2022, Hoofddorp, The Netherlands. Neuromuscul Disord 33 (2023), 884–896, 10.1016/j.nmd.2023.09.008.
McMillan, H.J., Proud, C.M., Farrar, M.A., Alexander, I.E., Muntoni, F., Servais, L., Onasemnogene abeparvovec for the treatment of spinal muscular atrophy. Expert Opin Biol Ther 22 (2022), 1075–1090, 10.1080/14712598.2022.2066471.
Mendell, J.R., Sahenk, Z., Lehman, K., et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: a Nonrandomized Controlled Trial. JAMA Neurol 77 (2020), 1122–1131, 10.1001/jamaneurol.2020.1484.
Gushchina, L.V., Bradley, A.J., Vetter, T.A., et al. Persistence of exon 2 skipping and dystrophin expression at 18 months after U7snRNA-mediated therapy in the Dup2 mouse model. Mol Ther Methods Clin Dev, 31, 2023, 101144, 10.1016/j.omtm.2023.101144.
Khanani, A.M., Thomas, M.J., Aziz, A.A., et al. Review of gene therapies for age-related macular degeneration. Eye (Lond) 36 (2022), 303–311, 10.1038/s41433-021-01842-1.
Hastie, E., Samulski, R.J., Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success- a personal perspective. Hum Gene Ther 26 (2015), 257–265, 10.1089/hum.2015.025.
Vandamme, C., Adjali, O., Mingozzi, F., Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum Gene Ther 28 (2017), 1061–1074, 10.1089/hum.2017.150.
Day, J.W., Mendell, J.R., Burghes, A.H.M., van Olden, R.W., Adhikary, R.R., Dilly, K.W., Adeno-associated virus serotype 9 antibody seroprevalence for patients in the United States with spinal muscular atrophy. Mol Ther Methods Clin Dev, 31, 2023, 101117, 10.1016/j.omtm.2023.101117.
Aharoni, S., Bistritzer, J., Levine, H., et al. Adeno-associated virus serotype 9 antibody titers in patients with SMA pre-screened for treatment with onasemnogene abeparvovec -routine care evidence. Gene Ther 30 (2023), 101–106, 10.1038/s41434-022-00339-0.
Bottermann, M., Foss, S., Caddy, S.L., et al. Complement C4 prevents viral infection through capsid inactivation. Cell Host Microbe 25 (2019), 617–629.e7, 10.1016/j.chom.2019.02.016.
Appledorn, D.M., McBride, A., Seregin, S., et al. Complex interactions with several arms of the complement system dictate innate and humoral immunity to adenoviral vectors. Gene Ther 15 (2008), 1606–1617, 10.1038/gt.2008.114.
Zaiss, A.K., Cotter, M.J., White, L.R., et al. Complement is an essential component of the immune response to adeno-associated virus vectors. J Virol 82 (2008), 2727–2740, 10.1128/JVI.01990-07.
Agrawal, P., Nawadkar, R., Ojha, H., Kumar, J., Sahu, A., Complement evasion strategies of viruses: an overview. Front Microbiol, 8, 2017, 1117, 10.3389/fmicb.2017.01117.
Alcami, A., Koszinowski, U.H., Viral mechanisms of immune evasion. Trends Microbiol 8 (2000), 410–418, 10.1016/s0966-842x(00)01830-8.
Muhuri, M., Maeda, Y., Ma, H., et al. Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest, 131, 2021, e143780, 10.1172/JCI143780.
Rapti, K., Grimm, D., Adeno-associated viruses (AAV) and host immunity: a race between the hare and the hedgehog. Front Immunol, 12, 2021, 753467, 10.3389/fimmu.2021.753467.
Seregin, S.S., Aldhamen, Y.A., Appledorn, D.M., et al. Adenovirus capsid-display of the retro-oriented human complement inhibitor DAF reduces Ad vector-triggered immune responses in vitro and in vivo. Blood 116 (2010), 1669–1677, 10.1182/blood-2010-03-276949.
Golshayan, D., Schwotzer, N., Fakhouri, F., Zuber, J., Targeting the complement pathway in kidney transplantation. J Am Soc Nephrol 34 (2023), 1776–1792, 10.1681/ASN.0000000000000192.
Sack, B.K., Herzog, R.W., Evading the immune response upon in vivo gene therapy with viral vectors. Curr Opin Mol Ther 11 (2009), 493–503.
Martino, A.T., Suzuki, M., Markusic, D.M., et al. The genome of self-complementary adeno-associated viral vectors increases toll-like receptor 9-dependent innate immune responses in the liver. Blood 117 (2011), 6459–6468, 10.1182/blood-2010-10-314518.
Waldrop, M.A., Karingada, C., Storey, M.A., et al. Gene therapy for spinal muscular atrophy: safety and early outcomes. Pediatrics, 146, 2020, e20200729, 10.1542/peds.2020-0729.
D'Antiga, L., Beuers, U., Ronzitti, G., et al. Gene therapy in patients with the Crigler-Najjar syndrome. N Engl J Med 389 (2023), 620–631, 10.1056/NEJMoa2214084.
Pipe, S.W., Leebeek, F.W.G., Recht, M., et al. Gene therapy with Etranacogene Dezaparvovec for hemophilia B. N Engl J Med 388 (2023), 706–718, 10.1056/NEJMoa2211644.
Thompson, A.A., Walters, M.C., Kwiatkowski, J., et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. N Engl J Med 378 (2018), 1479–1493, 10.1056/NEJMoa1705342.
Chand, D., Mohr, F., McMillan, H., et al. Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J Hepatol 74 (2021), 560–566, 10.1016/j.jhep.2020.11.001.
Mendell, J.R., Al-Zaidy, S., Shell, R., et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377 (2017), 1713–1722, 10.1056/NEJMoa1706198.
Wilson, J.M., Flotte, T.R., Moving forward after two deaths in a gene therapy trial of myotubular myopathy. Hum Gene Ther 31 (2020), 695–696, 10.1089/hum.2020.182.
Hudry, E., Aihara, F., Meseck, E., et al. Liver injury in cynomolgus monkeys following intravenous and intrathecal scAAV9 gene therapy delivery. Mol Ther 31 (2023), 2999–3014, 10.1016/j.ymthe.2023.07.020.
Lieber, A., He, C.Y., Meuse, L., et al. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol 71 (1997), 8798–8807, 10.1128/JVI.71.11.8798-8807.1997.
Friese, J., Geitmann, S., Holzwarth, D., et al. Safety monitoring of gene therapy for spinal muscular atrophy with onasemnogene abeparvovec: a single center experience. J Neuromuscul Dis 8 (2021), 209–216, 10.3233/JND-200593.
Othman, M., Labelle, A., Mazzetti, I., Elbatarny, H.S., Lillicrap, D., Adenovirus-induced thrombocytopenia: the role of von Willebrand factor and P-selectin in mediating accelerated platelet clearance. Blood 109 (2007), 2832–2839, 10.1182/blood-2006-06-032524.
Byrne, B.J., Elder, M., Leon-Astudillo, C., Corti, M., Secondary hemophagocytic lymphohistiocytosis following Zolgensma therapy: an evolving story on the innate response to systemic gene therapy. Mol Ther 30 (2022), 3503–3504, 10.1016/j.ymthe.2022.11.007.
Galletta, F., Cucinotta, U., Marseglia, L., et al. Hemophagocytic lymphohistiocytosis following gene replacement therapy in a child with type 1 spinal muscular atrophy. J Clin Pharm Ther 47 (2022), 1478–1481, 10.1111/jcpt.13733.
Lek, A., Wong, B., Keeler, A., et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne's muscular dystrophy. N Engl J Med 389 (2023), 1203–1210, 10.1056/NEJMoa2307798.
Chand, D.H., Zaidman, C., Arya, K., et al. Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J Pediatr 231 (2021), 265–268, 10.1016/j.jpeds.2020.11.054.
Prabhu, N., Saylam, E., Louis, C., et al. Thrombotic microangiopathy (TMA): a potential adverse reaction post Zolgensma (onasemnogene abeparvovec-xioi) therapy for Spinal muscular atrophy (SMA). Neurology, 5483, 2020, 94.
Guillou, J., de Pellegars, A., Porcheret, F., et al. Fatal thrombotic microangiopathy case following adeno-associated viral SMN gene therapy. Blood Adv 6 (2022), 4266–4270, 10.1182/bloodadvances.2021006419.
Yazaki, K., Sakuma, S., Hikita, N., Fujimaru, R., Hamazaki, T., Child neurology: pathologically confirmed thrombotic microangiopathy caused by onasemnogene abeparvovec treatment for SMA. Neurology 98 (2022), 808–813, 10.1212/WNL.0000000000200676.
Mendonca R, Ortega A, Matsui C, et al. Real world safety and exploratory efficacy of gene therapy for patients with 5q-Spinal Muscular Atrophy in a Brazilian cohort. Preprint. Posted online February 28, 2023. Research Square. https://doi.org/10.21203/rs.3.rs-2527927/v1.
Witte, D., Hartmann, H., Drube, J., Haffner, D., Illsinger, S., Thrombotic microangiopathy (TMA) after gene replacemant therapy (GRT) due to spinal muscular atrophy: case summary and recommendations for treatment. Klin Padiatr 234 (2022), 42–47, 10.1055/a-1538-4936.
16th International Congress on Neuromuscular Diseases. 21-22 & 28-29 May 2021 Virtual, worldwide. J Neuromuscul Dis 8 (2021), S1–S171, 10.3233/JND-219006.
Belluscio, B, Beaverson, K, Garnier, N, et al. Safety and efficacy of PF-06939926 gene therapy in boys with Duchenne muscular dystrophy: Update on data from the phase 1b study. Presented at MDA Clinical and Scientific Conference 2021; March 15–18. Poster 77 https://www.neurologylive.com/view/pf-06939926-safe-efficacious-dmd. (Accessed 8 April 2024)
Rossano, J., Lin, K., Epstein, S., et al. Safety Profile Of The First Pediatric Cardiomyopathy Gene Therapy Trial: RP-A501 (AAV9:LAMP2B) For Danon Disease. Presented at: HFSA annual scientific meeting 2022, October 1, 2022, Washington https://rocketpharma.com/wp-content/uploads/HFSA-2022-Poster-FINAL.pdf. (Accessed 8 April 2024)
Lozier, J.N., Csako, G., Mondoro, T.H., et al. Toxicity of a first-generation adenoviral vector in rhesus macaques. Hum Gene Ther 13 (2002), 113–124, 10.1089/10430340152712665.
Gruchala, M., Bhardwaj, S., Pajusola, K., et al. Gene transfer into rabbit arteries with adeno-associated virus and adenovirus vectors. J Gene Med 6 (2004), 545–554, 10.1002/jgm.535.
Newman, K.D., Dunn, P.F., Owens, J.W., et al. Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J Clin Invest 96 (1995), 2955–2965, 10.1172/JCI118367.
Tian, J., Xu, Z., Smith, J.S., Hofherr, S.E., Barry, M.A., Byrnes, A.P., Adenovirus activates complement by distinctly different mechanisms in vitro and in vivo: indirect complement activation by virions in vivo. J Virol 83 (2009), 5648–5658, 10.1128/JVI.00082-09.
Merle, N.S., Paule, R., Leon, J., et al. P-selectin drives complement attack on endothelium during intravascular hemolysis in TLR-4/heme-dependent manner. Proc Natl Acad Sci U S A 116 (2019), 6280–6285, 10.1073/pnas.1814797116.
Annane, D., Heming, N., Grimaldi-Bensouda, L., et al. Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: a proof-of-concept study. EClinicalmedicine, 28, 2020, 100590, 10.1016/j.eclinm.2020.100590.
Noris, M., Benigni, A., Remuzzi, G., The case of complement activation in COVID-19 multiorgan impact. Kidney Int 98 (2020), 314–322, 10.1016/j.kint.2020.05.013.
Ackermann, M., Verleden, S.E., Kuehnel, M., et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 383 (2020), 120–128, 10.1056/NEJMoa2015432.
El Sissy, C., Saldman, A., Zanetta, G., et al. COVID-19 as a potential trigger of complement-mediated atypical HUS. Blood 138 (2021), 1777–1782, 10.1182/blood.2021012752.
Salabarria, S.M., Corti, M., Coleman, K.E., et al. Thrombotic microangiopathy following systemic AAV administration is dependent on anti-capsid antibodies. J Clin Invest, 134, 2023, e173510, 10.1172/JCI173510.