mass spectrometry; cyclodextrin; noncovalent interactions
Abstract :
[en] alpha-cyclodextrin complexes with linear alpha,omega-dicarboxylic acids were investigated by electrospray mass spectrometry. These hydrophobic complexes are known to have an equilibrium binding constant that increases with the diacid chain length. However, the electrospray mass spectrometry (ES-MS) spectra showed that the relative intensity of the complex did not vary significantly with chain length. This contradiction is caused by a contribution of nonspecific adducts to the signal of the complex in ES-MS. In order to estimate the contribution of nonspecific adducts to the total intensity of the complexes with alpha-cyclodextrin, the comparison was made between alpha-cyclodextrin and maltohexaose, the latter being incapable of making inclusion complexes in solution. The signal observed for complexes between diacids and maltohexaose can only result from nonspecific electrostatic aggregation, and is found to be more favorable with the shorter diacids. This is also supported by MS/MS experiments. A procedure is described which allows estimation of the contribution of the nonspecific complex in the spectra of the complexes with alpha-cyclodextrin by using the relative intensity of the complex with maltohexaose. The contribution of the specific complex to the total signal intensity is found to increase with the diacid chain length, which is in agreement with solution behavior.
Research Center/Unit :
CART - Centre Interfacultaire d'Analyse des Résidus en Traces - ULiège
Disciplines :
Chemistry
Author, co-author :
Gabelica, Valérie ; Université de Liège - ULiège > Chimie physique, spectrométrie de masse
Galic, Nives; Université de Liège - ULiège > Chimie Physique, Spectrométrie de Masse
De Pauw, Edwin ; Université de Liège - ULiège > Chimie physique, spectrométrie de masse
Language :
English
Title :
On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry
Publication date :
2002
Journal title :
Journal of the American Society for Mass Spectrometry
ISSN :
1044-0305
eISSN :
1879-1123
Publisher :
Elsevier Science, New York, United States - New York
Smith R.D., Light-Wahl K.J. The Observation of Non-Covalent Interactions in Solution by Electrospray Ionization Mass Spectrometry Promise, Pitfalls, and Prognosis . Biol. Mass Spectrom. 22:1993;493-501.
Smith D.L., Zhang Z. Probing Non-Covalent Structural Features of Proteins by Mass Spectrometry. Mass Spectrom. Rev. 13:1994;411-429.
Vincenti M. Host-Guest Chemistry in the Mass Spectrometer. J. Mass Spectrom. 30:1995;925-939.
Smith R.D., Bruce J.E., Wu Q., Lei Q.P. New Mass Spectrometric Methods for the Study of Non-Covalent Associations of Biopolymers. Chem. Soc. Rev. 26:1997;191-202.
Loo J.A. Studying Non-Covalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 16:1997;1-23.
Schalley C.A. Supramolecular Chemistry Goes Gas Phase the Mass Spectrometric Examination of Non-Covalent Interactions in Host-Guest Chemistry and Molecular Recognition . Int. J. Mass Spectrom. 194:2000;11-39.
Rekharsky M.V., Inoue Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 98:1998;1875-1917.
Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 98:1998;1743-1753.
Connors K.A. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev. 97:1997;1325-1357.
Saenger W. Cyclodextrin Inclusion Compounds in Research and Industry. Angew. Chem. Int. Ed. 19:1980;344-362.
Selva A., Redenti E., Zanol M., Ventura P., Casetta B. A Study of β-Cyclodextrin and Its Inclusion Complexes with Piroxicam and Tefenadrine by Ionspray Mass Spectrometry. Org. Mass Spectrom. 28:1993;983-986.
Camilleri P., Haskins N.J., New A.P., Saunders M.R. Analyzing of the Complexation of Amino Acids and Peptides with β-Cyclodextrin Using Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 7:1993;949-952.
Haskins N.J., Saunders M.R., Camilleri P. The Complexation and Chiral Selectivity of 2-Hydroxypropyl-β-Cyclodextrin with Guest Molecules as Studied by Electrospray Mass Spectrometry. Rapid Commun. Mass Spectrom. 8:1994;423-426.
Ramanathan R., Prokai L. Electrospray Ionization Mass Spectrometric Study of Encapsulation of Amino Acids by Cyclodextrins. J. Am. Soc. Mass Spectrom. 6:1995;866-871.
Cescutti P., Garozzo D., Rizzo R. Study of the Inclusion Complexes of Aromatic Molecules with Cyclodextrins Using Ionspray Mass Spectrometry. Carbohyd. Res. 290:1996;105-115.
Cescutti P., Garozzo D., Rizzo R. Effect of Methylation of β-Cyclodextrin on the Formation of Inclusion Complexes with Aromatic Compounds. An Ionspray Mass Spectrometry Investigation. Carbohyd. Res. 302:1997;1-6.
Lamcharfi E., Chuilon S., Kerbal A., Kunesch G., Libot F., Virelizier H. Electrospray Ionization Mass Spectrometry in Supramolecular Chemistry Characterization of Non-Covalent Cyclodextrin Complexes . J. Mass Spectrom. 31:1996;982-986.
Cunniff J.B., Vouros P. False Positives and the Detection of Cyclodextrin Inclusion Complexes by Electrospray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 6:1995;437-447.
Ramirez J., Ahn S., Grigorean G., Lebrilla C.B. Evidence for the Formation of Gas-Phase Inclusion Complexes with Cyclodextrins and Amino Acids. J. Am. Chem. Soc. 122:2000;6884-6890.
Ahn S., Ramirez J., Grigorean G., Lebrilla C.B. Chiral Recognition in Gas-Phase Cyclodextrin Amino Acid Complexes - Is the Three Point Interaction Still Valid in the Gas Phase? J. Am. Soc. Mass Spectrom. 12:2001;278-287.
Lebrilla C.B. The Gas-Phase Chemistry of Cyclodextrin Inclusion Complexes. Acc. Chem. Res. 34:2001;653-661.
Gomez-Orellana I., Hallen D., Stödeman M. Microcalorimetric Titration of α-Cyclodextrin with Some Straight-Chain α,ω-Dicarboxylates in Aqueous Solution at Different Temperature. J. Chem. Soc. Faraday Trans. 90:1994;3397-3400.
Castronuovo G., Elia V., Velleca F., Viscardi G. Thermodynamics of the Interaction of α-Cyclodextrin with α,ω-Dicarboxylic Acids in Aqueous Solutions. A Calorimetric Study at 25°C. Thermochimica Acta. 292:1997;31-37.
Eliadou K., Yannakopoulou K., Rontoyianni A., Mavridis I.M. NMR Detection of Simultaneous Formation of [2]- and [3]Pseudorotaxanes in Aqueous Solution Between α-Cyclodextrin and Linear Aliphatic α,ω-Amino Acids, an α,ω-Diamine and an α,ω-Diacid of Similar Length, and Comparison with the Solid State Structures. J. Org. Chem. 64:1999;6217-6226.
Wilson L.D., Verrall R.E. A Volumetric Study of Cyclodextrin-α-ω-Alkyl Dicarboxylate Anion Complexes in Aqueous Solutions. J. Phys. Chem. B. 104:2000;1880-1886.
Siu K.W.M., Gardner G.J., Berman S.S. Multiply Charged Ions in Ionspray Mass Spectrometry. Org. Mass Spectrom. 24:1989;931-942.
Aplin R.T., Moloney M.G., Newby R., Wright E. Negative-Ion Electrospray Mass Spectrometric Analysis of Dicarboxylic Acids. J. Mass Spectrom. 34:1999;60-61.
Bastos M., Briggner L.-E., Shehatta I., Wadsö I. The Binding of Alkane-α,ω-Diols to α,-Cyclodextrin. A Microcalorimetric Study. J. Chem. Thermodynamics. 22:1990;1181-1190.
Castronuovo G., Elia V., Fessas D., Giordano A., Velleca F. Thermodynamics of the Interaction of Cyclodextrins with Aromatic and α,ω-Amino Acids in Aqueous Solutions a Calorimetric Study at 25°C . Carbohydr. Res. 272:1995;31-39.
Robinson C.V., Chung E.W., Kragelund B.B., Knudsen J., Aplin R.T., Poulsen F.M., Dobson C.M. Probing the Nature of Noncovalent Interactions by Mass Spectrometry. A Study of Protein-CoA Ligand Binding and Assembly. J. Am. Chem. Soc. 118:1996;8646-8653.
Komiyama M., Hirai H., Kobayashi K. Complex-Forming Ability of Linear Glucose Oligomers As Non-Cyclic Analogs of Cyclodextrins. Makromol. Chem. Rapid Commun. 7:1986;739-742.
Aoyama Y., Otsuki J., Nagai Y., Kobayashi K., Toi H. Host-Guest Complexation of Oligosaccharides - Interaction of Maltodextrins with Hydrophobic Fluorescence Probes in Water. Tetrahedron Lett. 33:1992;3775-3778.
Kano K., Minami K., Horigushi K., Ishimura T., Kodera M. Ability of Non-Cyclic Oligosaccharides to Form Molecular Complexes and Its Use for Chiral Separation by Capillary Zone Electrophoresis. J. Chromatogr. A. 694:2002;307-313.
Mele A., Selva A. Detection of 1:1 Adducts of Piroxicam with β-Cyclodextrin or with Maltohexaose by Fast Atom Bombardment Mass Spectrometry. J. Mass Spectrom. 30:1995;645-647.
Selva A., Redenti E., Zanol M., Ventura P., Casetta B. Letter Support for the Proposedobservation by Ionspray Mass Spectrometry of Piroxicam/β-Cyclodextrin and Tefenadrine/β-Cyclodextrin Non-Covalent Inclusion Complexes . Eur. Mass Spectrom. 1:1995;105-106.
Bakhtiar R., Bulusu S. Molecular Complexes of Cyclodextrins Application of Ion-Spray Mass Spectrometry to the Study of Complexes with Selected Nitrosamines . Rapid Commun. Mass Spectrom. 9:1995;1391-1394.
Gomez A., Tang K. Charge and Fission of Droplets in Electrostatic Sprays. Phys. Fluids. 6:1994;404-414.
Kebarle P. A Brief Overview of the Present Status of the Mechanisms Involved in Electrospray Mass Spectrometry. J. Mass Spectrom. 35:2000;804-817.
Gabelica V., De Pauw E. Comparison Between Solution-Phase Stability and Gas-Phase Kinetic Stability of Oligodeoxynucleotide Duplexes. J. Mass Spectrom. 36:2001;397-402.
Li Y.-T., Hsieh Y.L., Henion J.D., Senko M.W., McLafferty F.W., Ganem B. Mass Spectrometric Studies on Noncovalent Dimers of Leucine Zipper Peptides. J. Am. Chem. Soc. 115:1993;8409-8413.
Ross P.D., Rekharsky M.V. Thermodynamics of Hydrogen Bond and Hydrophobic Interactions in Cyclodextrin Complexes. Biophys. J. 71:1996;2144-2154.
Pace C.N. Evaluating Contribution of Hydrogen Bonding and Hydrophobic Binding to Protein Folding. Methods Enzymol. 259:1995;538-554.
Lo Conte L., Chothia C., Janin J. The Atomic Structure of Protein-Protein Recognition Sites. J. Mol. Biol. 285:1999;2177-2198.
Kuntz I.D., Chen K., Sharp K.A., Kollman P. The Maximal Affinity of Ligands. Proc. Natl. Acad. Sci. U.S.A. 96:1999;9997-10002.
Davis A.M., Teague S.J. Hydrogen Bonding, Hydrophobic Interactions, and Failure of the Rigid Receptor Hypothesis. Angew. Chem. Int. Ed. Engl. 38:1999;736-749.