[en] [en] INTRODUCTION: We sought to evaluate the cost-effectiveness of newborn screening (NBS) versus no NBS for 5q spinal muscular atrophy (SMA) in England.
METHODS: A cost-utility analysis using a combination of decision tree and Markov model structures was developed to estimate the lifetime health effects and costs of NBS for SMA, compared with no NBS, from the perspective of the National Health Service (NHS) in England. A decision tree was designed to capture NBS outcomes, and Markov modeling was used to project long-term health outcomes and costs for each patient group following diagnosis. Model inputs were based on existing literature, local data, and expert opinion. Sensitivity and scenario analyses were conducted to assess the robustness of the model and the validity of the results.
RESULTS: The introduction of NBS for SMA in England is estimated to identify approximately 56 (96% of cases) infants with SMA per year. Base-case results indicate that NBS is dominant (less costly and more effective) than a scenario without NBS, with a yearly cohort of newborns accruing incremental savings of £62,191,531 and an estimated gain in quality-adjusted life-years of 529 years over their lifetime. Deterministic and probabilistic sensitivity analyses demonstrated the robustness of the base-case results.
CONCLUSIONS: NBS improves health outcomes for patients with SMA and is less costly compared with no screening; therefore, it is a cost-effective use of resources from the perspective of the NHS in England.
Disciplines :
Pediatrics
Author, co-author :
Weidlich, Diana; Health Economics, Clarivate, Munich, Germany. Diana.Weidlich@Clarivate.com ; Clarivate, Landsberger Straße 302, 80687, Munich, Germany. Diana.Weidlich@Clarivate.com
Servais, Laurent ; Université de Liège - ULiège > Département des sciences cliniques ; MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
Kausar, Imran; Novartis Gene Therapies, London, UK
Howells, Ruth; Health Technology Assessment, Clarivate, Manchester, UK
This study was funded by Novartis Gene Therapies, Inc. The Rapid Service Fee for publication of this article was also funded by Novartis Gene Therapies, Inc.
Kolb SJ, Kissel JT. Spinal muscular atrophy: a timely review. Arch Neurol. 2011;68(8):979–84.
Verhaart IEC, Robertson A, Wilson IJ, Aartsma-Rus A, Cameron S, Jones CC, et al. Prevalence, incidence and carrier frequency of 5q–linked spinal muscular atrophy—a literature review. Orphanet J Rare Dis. 2017;12(1):124.
D’Amico A, Mercuri E, Tiziano FD, Bertini E. Spinal muscular atrophy. Orphanet J Rare Dis. 2011;6(1):71.
Chung BH, Wong VC, Ip P. Spinal muscular atrophy: survival pattern and functional status. Pediatrics. 2004;114(5):e548–53.
Spierziekten Nederland. Richtlijn spinale musculaire atrofie (SMA) type 1. 2018. https://www.spierziekten.nl/fileadmin/user_upload/VSN/documenten/Hulpverlenersinformatie/Richtlijnen/R037-SMA1-Richtlijn-2018.pdf. Accessed Jan 18, 2023.
Sugarman EA, Nagan N, Zhu H, Akmaev VR, Zhou Z, Rohlfs EM, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet. 2012;20(1):27–32.
Ogino S, Leonard DG, Rennert H, Ewens WJ, Wilson RB. Genetic risk assessment in carrier testing for spinal muscular atrophy. Am J Med Genet. 2002;110(4):301–7.
van der Pol L. Cost-effectiveness of newborn screening for spinal muscular atrophy [expert opinion meeting]. 28 Sept 2020. Cisco Webex video conference.
Spinal Muscular Atrophy UK. What is 5q spinal muscular atrophy? 2023. https://smauk.org.uk/what-is-5q-sma. Accessed Jan 18, 2023.
Ramdas S, Servais L. New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin Pharmacother. 2020;21(3):307–15.
Mercuri E, Deconinck N, Mazzone ES, Nascimento A, Oskoui M, Saito K, et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2022;21(1):42–52.
Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, Rose K, Xiong H, Zanoteli E, et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls. N Engl J Med. 2021;385(5):427–35.
Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378(7):625–35.
Baranello G, Darras BT, Day JW, Deconinck N, Klein A, Masson R, et al. Risdiplam in type 1 spinal muscular atrophy. N Engl J Med. 2021;384(10):915–23.
Day JW, Finkel RS, Chiriboga CA, Connolly AM, Crawford TO, Darras BT, et al. Onasemnogene abeparvovec gene therapy for symptomatic break as infantile- onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(4):284–93.
Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723–32.
Mercuri E, Muntoni F, Baranello G, Masson R, Boespflug-Tanguy O, Bruno C, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(10):832–41.
Strauss KA, Farrar MA, Muntoni F, Saito K, Mendell JR, Servais L, et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the Phase III SPR1NT trial. Nat Med. 2022;28(7):1390–7.
Strauss KA, Farrar MA, Muntoni F, Saito K, Mendell JR, Servais L, et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the Phase III SPR1NT trial. Nat Med. 2022;28(7):1381–9.
Mercuri E, Finkel RS, Muntoni F, Wirth B, Montes J, Main M, et al. Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord. 2018;28(2):103–15.
Finkel RS, Sejersen T, Mercuri E, on behalf of the ENMC SMA Workshop Study Group. 218th ENMC International Workshop: Revisiting the consensus on standards of care in SMA. Naarden, The Netherlands, 19–21 February 2016. Neuromuscul Disord. 2017;27(6):596–605.
Dangouloff T, Servais L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther Clin Risk Manag. 2019;15:1153–61.
Vill K, Kölbel H, Schwartz O, Blaschek A, Olgemöller B, Harms E, et al. One year of newborn screening for SMA—results of a German pilot project. J Neuromuscul Dis. 2019;6(4):503–15.
Shih STF, Farrar MA, Wiley V, Chambers G. Newborn screening for spinal muscular atrophy with disease-modifying therapies: a cost-effectiveness analysis. J Neurol Neurosurg Psychiatry. 2021;92(12):1296–304.
Boemer F, Caberg J-H, Beckers P, Dideberg V, di Fiore S, Bours V, et al. Three years pilot of spinal muscular atrophy newborn screening turned into official program in Southern Belgium. Sci Rep. 2021;11(1):19922.
D’Silva AM, Kariyawasam DST, Best S, Wiley V, Farrar MA. Integrating newborn screening for spinal muscular atrophy into health care systems: an Australian pilot programme. Dev Med Child Neurol. 2022;64(5):625–32. 10.1111/dmcn.15117. DOI: 10.1111/dmcn.15117
Dangouloff T, Hiligsmann M, Deconinck N, D’Amico A, Seferian AM, Boemer F, et al. Financial cost and quality of life of patients with spinal muscular atrophy identified by symptoms or newborn screening. Dev Med Child Neurol. 2023;65(1):67–77.
Dangouloff T, Burghes A, Tizzano EF, Servais L. 244th ENMC international workshop: newborn screening in spinal muscular atrophy May 10–12, 2019, Hoofdorp, The Netherlands. Neuromuscul Disord. 2020;30(1):93–103. 10.1016/j.nmd.2019.11.002. DOI: 10.1016/j.nmd.2019.11.002
Dangouloff T, Vrščaj E, Servais L, Osredkar D. Newborn screening programs for spinal muscular atrophy worldwide: where we stand and where to go. Neuromuscul Disord. 2021;31(6):574–82. 10.1016/j.nmd.2021.03.007. DOI: 10.1016/j.nmd.2021.03.007
Shih STF, Keller E, Wiley V, Farrar MA, Wong M, Chambers GM. Modelling the cost-effectiveness and budget impact of a newborn screening program for spinal muscular atrophy and severe combined immunodeficiency. Int J Neonatal Screen. 2022;8(3):45. 10.3390/ijns8030045. DOI: 10.3390/ijns8030045
Jalali A, Rothwell E, Botkin JR, Anderson RA, Butterfield RJ, Nelson RE. Cost-effectiveness of nusinersen and universal newborn screening for spinal muscular atrophy. J Pediatr. 2020;227:274-80.e2. 10.1016/j.jpeds.2020.07.033. DOI: 10.1016/j.jpeds.2020.07.033
Velikanova R, van der Schans S, Bischof M, van Olden RW, Postma M, Boersma C. Cost-effectiveness of newborn screening for spinal muscular atrophy in The Netherlands. Value Health. 2022;25(10):1696–704.
Dangouloff T, Thokala P, Daron A, Delstanche S, Servais L, Hiligsmann MP. 44 Cost-effectiveness of spinal muscular atrophy newborn screening in Belgium. Neuromuscul Disord. 2022;32(Suppl 1):S60.
Office for National Statistics. Live births. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths. Accessed Jan 18, 2023.
Wadman RI, Wijngaarde CA, Stam M, Bartels B, Otto LAM, Lemmink HH, et al. Muscle strength and motor function throughout life in a cross-sectional cohort of 180 patients with spinal muscular atrophy types 1c–4. Eur J Neurol. 2018;25(3):512–8.
National Institute for Health and Care Excellence (NICE). NICE final draft guidance approves life-changing gene therapy for treating spinal muscular atrophy. 8 Mar 2021. https://www.nice.org.uk/news/article/nice-approves-life-changing-gene-therapy-for-treating-spinal-muscular-atrophy. Accessed Jan 13, 2023.
Malone DC, Dean R, Arjunji R, Jensen I, Cyr P, Miller B, et al. Cost-effectiveness analysis of using onasemnogene abeparvocec (AVXS-101) in spinal muscular atrophy type 1 patients. J Mark Access Health Policy. 2019;7(1):1601484.
Alias L, Bernal S, Fuentes-Prior P, Barceló MJ, Also E, Martínez-Hernández R, et al. Mutation update of spinal muscular atrophy in Spain: molecular characterization of 745 unrelated patients and identification of four novel mutations in the SMN1 gene. Hum Genet. 2009;125(1):29–39.
Chien YH, Chiang SC, Weng WC, Lee NC, Lin CJ, Hsieh WS, et al. Presymptomatic diagnosis of spinal muscular atrophy through newborn screening. J Pediatr. 2017;190:124-9.e1.
Hale K, Ojodu J, Singh S. Landscape of spinal muscular atrophy newborn screening in the United States: 2018–2021. Int J Neonatal Screen. 2021;7(3):33. 10.3390/ijns7030033. DOI: 10.3390/ijns7030033
Kariyawasam DST, Russell JS, Wiley V, Alexander IE, Farrar MA. The implementation of newborn screening for spinal muscular atrophy: the Australian experience. Genet Med. 2020;22(3):557–65.
Kay DM, Stevens CF, Parker A, Saavedra-Matiz CA, Sack V, Chung WK, et al. Implementation of population-based newborn screening reveals low incidence of spinal muscular atrophy. Genet Med. 2020;22(8):1296–302.
Vill K, Schwartz O, Blaschek A, Gläser D, Nennstiel U, Wirth B, et al. Newborn screening for spinal muscular atrophy in Germany: clinical results after 2 years. Orphanet J Rare Dis. 2021;16(1):153. 10.1186/s13023-021-01783-8. DOI: 10.1186/s13023-021-01783-8
Ogino S, Wilson RB, Gold B. New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. Eur J Hum Genet. 2004;12(12):1015–23.
Müller-Felber W. SMA NBS programme learnings from Germany. Presented at: Biogen-Organized Satellite Symposium at the 14th Congress of the European Paediatric Neurology Society (EPNS). 2022. https://assets.ctfassets.net/evoe4hvfuo1p/3m8uF02OW6vzFWJo6ZeKJV/7f27fee50f2d7a87109cedb48f8a6d11/P_SMA_Mueller-Felber_Slides_EPNS_2022_UK_ENG_4___-__Read-Only.pdf. Accessed Jan 18, 2023.
Gregoretti C, Ottonello G, Chiarini Testa MB, Mastella C, Rava L, Bignamini E, et al. Survival of patients with spinal muscular atrophy type 1. Pediatrics. 2013;131(5):e1509–14.
Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, et al. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82(6):883–91.
Zerres K, Rudnik-Schöneborn S, Forrest E, Lusakowska A, Borkowska J, Hausmanowa-Petrusewicz I. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci. 1997;146(1):67–72.
Office for National Statistics. National life tables, UK: 2014 to 2016. 27 Sept 2017. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulletins/nationallifetablesunitedkingdom/2014to2016. Accessed Jan 18, 2023.
Heijnen ML, Jansen M, van Gorp A, Hillen D, Elsinghorst E, Klein A. Uitvoeringstoets toevoeging Spinale Musculaire Atrophie aan de neonatale hielprikscreening. 2020. https://www.rivm.nl/bibliotheek/rapporten/2020-0105.pdf. Accessed Jan 18, 2023.
Oxford University Hospitals NHS Foundation Trust. Oxford Genetics Laboratories Price List For Rare Disease Services from April 2022. 2022. https://www.ouh.nhs.uk/services/referrals/genetics/genetics-laboratories/rare-disease-genomics/documents/price-list.pdf. Accessed Jan 18, 2023.
NHS 75 England. National Cost Collection for the NHS 2019/2020. 2020. https://www.england.nhs.uk/national-cost-collection/. Accessed Jan 18, 2023.
Personal Social Services Research Unit. Unit Costs of Health and Social Care 2021. 2022. https://kar.kent.ac.uk/92342/. Accessed Jan 18, 2023.
Wijngaarde CA, Stam M, Otto LAM, van Eijk RPA, Cuppen I, Veldhoen ES, et al. Population-based analysis of survival in spinal muscular atrophy. Neurology. 2020;94(15):e1634–44.
Thompson R, Vaidya S, Teynor M. The utility of different approachs to developing health utilities data in childhood rare diseases: a case study in spinal muscular atrophy (SMA). Value Health. 2017;20(9):PA725-6.
Tappenden P, Hamilton J, Kaltenthaler E, Hock E, Rawdin A, Mukuria C, et al. Nusinersen for treating spinal muscular atrophy: a single technology appraisal. 28 May 2018. https://njl-admin.nihr.ac.uk/document/download/2021139. Accessed Jan 18, 2023.
Ara R, Brazier JE. Populating an economic model with health state utility values: moving toward better practice. Value Health. 2010;13(5):509–18.
NICE. NICE Health Technology Evaluations: the Manual. 31 Jan 2022. https://www.nice.org.uk/process/pmg36/resources/nice-health-technology-evaluations-the-manual-pdf-72286779244741. Accessed Jan 18, 2023.
Dean R, Jensen I, Cyr P, Miller B, Maru B, Sproule DM, et al. An updated cost-utility model for onasemnogene abeparvovec (Zolgensma®) in spinal muscular atrophy type 1 patients and comparison with evaluation by the Institute for Clinical and Effectiveness Review (ICER). J Mark Access Health Policy. 2021;9(1):1889841.
Wang T, Scuffham P, Byrnes J, Downes M. Cost-effectiveness analysis of gene-based therapies for patients with spinal muscular atrophy type I in Australia. J Neurol. 2022;269(12):6544–54.
Roche. SMA Screening for Newborns in Europe. 2022. https://www.roche.com/stories/sma-screening-for-newborns-in-europe. Accessed Jan 18, 2023.
Pera MC, Coratti G, Berti B, D’Amico A, Sframeli M, Albamonte E, et al. Diagnostic journey in spinal muscular atrophy: is it still an odyssey? PLoS One. 2020;15(3): e0230677.
Blaschek A, Kölbel H, Schwartz O, Köhler C, Gläser D, Eggermann K, et al. Newborn screening for SMA: can a wait-and-see strategy be responsibly justified in patients with four SMN2 copies? J Neuromuscul Dis. 2022;9(5):597–605.
Schorling DC, Becker J, Pechmann A, Langer T, Wirth B, Kirschner J. Discrepancy in redetermination of SMN2 copy numbers in children with SMA. Neurology. 2019;93(6):267–9.
Dangolouff T, Boemer F, Dideberg V, Caberg J-H, Servais L. Reader response: discrepancy in redetermination of SMN2 copy numbers in children with SMA. Neurology. 2020;95(3):144–5.