[en] Angelman Syndrome is a rare neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, characteristic behavior, and movement disorders. Clinical gait analysis provides the opportunity for movement quantification to investigate an observed maladaptive change in gait pattern and offers an objective outcome of change. Pressure-sensor-based technology, inertial and activity monitoring, and instrumented gait analysis (IGA) were employed to define motor abnormalities in Angelman syndrome. Temporal-spatial gait parameters of persons with Angelman Syndrome (pwAS) show deficiencies in gait performance through walking speed, step length, step width, and walk ratio. pwAS walk with reduced step lengths, increased step width, and greater variability. Three-dimensional motion kinematics showed increased anterior pelvic tilt, hip flexion, and knee flexion. PwAS have a walk ratio more than two standard deviations below controls. Dynamic electromyography showed prolonged activation of knee extensors, which was associated with a decreased range of motion and the presence of hip flexion contractures. Use of multiple gait tracking modalities revealed that pwAS exhibit a change in gait pattern to a flexed knee gait pattern. Cross-sectional studies of individuals with AS show a regression toward this maladaptive gait pattern over development in pwAS ages 4-11. PwAS unexpectedly did not have spasticity associated with change in gait pattern. Multiple quantitative measures of motor patterning may offer early biomarkers of gait decline consistent with critical periods of intervention, insight into appropriate management strategies, objective primary outcomes, and early indicators of adverse events.
Disciplines :
Pediatrics
Author, co-author :
Duis, Jessica ; Center for Gait & Movement Analysis (CGMA), Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA ; Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA ; Section of Pediatrics, Special Care Clinic, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
Skinner, Austin; Center for Gait & Movement Analysis (CGMA), Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
Carson, Robert; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Gouelle, Arnaud; Université de Reims Champagne-Ardenne, PSMS (Performance, Santé, Métrologie, Société), Reims, France ; Gait and Balance Academy, ProtoKinetics, Havertown, Pennsylvania, USA
Annoussamy, Melanie; Sysnav, Vernon, France
Silverman, Jill L; MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
Apkon, Susan; Department of Physical Medicine & Rehabilitation, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
Servais, Laurent ; Université de Liège - ULiège > Département des sciences cliniques ; Department of Paediatrics, Oxford University, Oxford, UK
Carollo, James; Center for Gait & Movement Analysis (CGMA), Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA ; Department of Physical Medicine & Rehabilitation, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
Language :
English
Title :
Quantitative measures of motor development in Angelman syndrome.
FAST - Foundation for Angelman Syndrome Therapeutics NICHD - National Institute of Child Health and Human Development
Funding text :
This study was generously supported by a grant awarded to Jessica Duis and Jill L. Silverman from the Foundation for Angelman Syndrome Therapeutics and NICHD (HD103526).Angelman Gait Group: Alex Tagawa, Fenna Phibbs, Damien Eggenspieler, Lucas Moore, Stela P. Petkova. This study was generously supported by a grant awarded to Jessica Duis and Jill L. Silverman from the Foundation for Angelman Syndrome Therapeutics and NICHD (HD103526). Jessica Duis and Laurent Servais have consulted for GeneTX Bio HD103526 therapeutics and Roche. Melanie Annoussamy is employed by Sysnav. Arnaud Gouelle was employed by ProtoKinetics.
Ackerly, S., Vitztum, C., Rockley, B., & Olney, B. (2003). Proximal femoral resection for subluxation or dislocation of the hip in spastic quadriplegia. Developmental Medicine and Child Neurology, 45(7), 436–440. https://doi.org/10.1017/s0012162203000823
Beckung, E., Steffenburg, S., & Kyllerman, M. (2004). Motor impairments, neurological signs, and developmental level in individuals with Angelman syndrome. Developmental Medicine and Child Neurology, 46(4), 239–243. https://doi.org/10.1017/s0012162204000398
Bird, L. M. (2014). Angelman syndrome: Review of clinical and molecular aspects. The Application of Clinical Genetics, 7, 93–104. https://doi.org/10.2147/TACG.S57386
Bogen, B., Moe-Nilssen, R., Ranhoff, A. H., & Aaslund, M. K. (2018). The walk ratio: Investigation of invariance across walking conditions and gender in community-dwelling older people. Gait & Posture, 61, 479–482. https://doi.org/10.1016/j.gaitpost.2018.02.019
Burdekin, E. D., Fogel, B. L., Jeste, S. S., Martinez, J., Rexach, J. E., DiStefano, C., Hyde, C., Safari, T., & Wilson, R. B. (2020). The neurodevelopmental and motor phenotype of SCA21 (ATX-TMEM240). Journal of Child Neurology, 35(14), 953–962. https://doi.org/10.1177/0883073820943488
Chabanon, A., Seferian, A. M., Daron, A., Pereon, Y., Cances, C., Vuillerot, C., De Waele, L., Cuisset, J. M., Laugel, V., Schara, U., Gidaro, T., Gilabert, S., Hogrel, J. Y., Baudin, P. Y., Carlier, P., Fournier, E., Lowes, L. P., Hellbach, N., Seabrook, T., … NatHis-SMA Study Group. (2018). Prospective and longitudinal natural history study of patients with Type 2 and 3 spinal muscular atrophy: Baseline data NatHis-SMA study. PLoS One, 13(7), e0201004. https://doi.org/10.1371/journal.pone.0201004
Copping, N. A., Berg, E. L., Foley, G. M., Schaffler, M. D., Onaga, B. L., Buscher, N., Silverman, J. L., & Yang, M. (2016). Touchscreen learning deficits and normal social approach behavior in the Shank3B model of Phelan-McDermid Syndrome and autism. Neuroscience, 345, 155–165. https://doi.org/10.1016/j.neuroscience.2016.05.016
Costales, J. L., & Kolevzon, A. (2015). Phelan-McDermid syndrome and SHANK3: Implications for treatment. Neurotherapeutics, 12(3), 620–630. https://doi.org/10.1007/s13311-015-0352-z
Davis, R. B., Õunpuu, S., Tyburski, D., & Gage, J. R. (1991). A gait analysis data collection and reduction technique. Human Movement Science, 10(5), 575–587. https://doi.org/10.1016/0167-9457(91)90046-z
Dhamne, S. C., Silverman, J. L., Super, C. E., Lammers, S. H. T., Hameed, M. Q., Modi, M. E., Copping, N. A., Pride, M. C., Smith, D. G., Rotenberg, A., Crawley, J. N., & Sahin, M. (2017). Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism. Molecular Autism, 8, 26. https://doi.org/10.1186/s13229-017-0142-z
DiStefano, C., Gulsrud, A., Huberty, S., Kasari, C., Cook, E., Reiter, L. T., Thibert, R., & Jeste, S. S. (2016). Identification of a distinct developmental and behavioral profile in children with Dup15q syndrome. Journal of Neurodevelopmental Disorders, 8, 19. https://doi.org/10.1186/s11689-016-9152-y
Erickson, C. A., Davenport, M. H., Schaefer, T. L., Wink, L. K., Pedapati, E. V., Sweeney, J. A., Fitzpatrick, S. E., Brown, W. T., Budimirovic, D., Hagerman, R. J., Hessl, D., Kaufmann, W. E., & Berry-Kravis, E. (2017). Fragile X targeted pharmacotherapy: Lessons learned and future directions. Journal of Neurodevelopmental Disorders, 9, 7. https://doi.org/10.1186/s11689-017-9186-9
Gentile, J. K., Tan, W. H., Horowitz, L. T., Bacino, C. A., Skinner, S. A., Barbieri-Welge, R., Bauer-Carlin, A., Beaudet, A. L., Bichell, T. J., Lee, H. S., Sahoo, T., Waisbren, S. E., Bird, L. M., & Peters, S. U. (2010). A neurodevelopmental survey of Angelman syndrome with genotype-phenotype correlations. Journal of Developmental and Behavioral Pediatrics, 31(7), 592–601. https://doi.org/10.1097/DBP.0b013e3181ee408e
Gouelle, A., Leroux, J., Bredin, J., & Megrot, F. (2016). Changes in gait variability from first steps to adulthood: Normative data for the gait variability index. Journal of Motor Behavior, 48(3), 249–255. https://doi.org/10.1080/00222895.2015.1084986
Gouelle, A., Rennie, L., Clark, D. J., Megrot, F., & Balasubramanian, C. K. (2018). Addressing limitations of the gait variability index to enhance its applicability: The enhanced GVI (EGVI). PLoS One, 13(6), e0198267. https://doi.org/10.1371/journal.pone.0198267
Grieco, J. C., Gouelle, A., & Weeber, E. J. (2018). Identification of spatiotemporal gait parameters and pressure-related characteristics in children with Angelman syndrome: A pilot study. Journal of Applied Research in Intellectual Disabilities, 31(6), 1219–1224. https://doi.org/10.1111/jar.12462
Hampton, T. G., Stasko, M. R., Kale, A., Amende, I., & Costa, A. C. (2004). Gait dynamics in trisomic mice: Quantitative neurological traits of down syndrome. Physiology & Behavior, 82(2–3), 381–389. https://doi.org/10.1016/j.physbeh.2004.04.006
Heyn, P. C., Tagawa, A., Pan, Z., Thomas, S., & Carollo, J. J. (2019). Prevalence of metabolic syndrome and cardiovascular disease risk factors in adults with cerebral palsy. Developmental Medicine and Child Neurology, 61(4), 477–483. https://doi.org/10.1111/dmcn.14148
Hoang, H. X., & Reinbolt, J. A. (2012). Crouched posture maximizes ground reaction forces generated by muscles. Gait & Posture, 36(3), 405–408. https://doi.org/10.1016/j.gaitpost.2012.03.020
Hof, A. L. (1996). Scaling gait data to body size. Gait & Posture, 4(3), 222–223. https://doi.org/10.1016/0966-6362(95)01057-2
Jiang, Y. H., Armstrong, D., Albrecht, U., Atkins, C. M., Noebels, J. L., Eichele, G., Sweatt, J. D., & Beaudet, A. L. (1998). Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron, 21(4), 799–811.
Kadaba, M. P., Wootten, M. E., Gainey, J., & Cochran, G. V. (1985). Repeatability of phasic muscle activity: Performance of surface and intramuscular wire electrodes in gait analysis. Journal of Orthopaedic Research, 3(3), 350–359. https://doi.org/10.1002/jor.1100030312
Kolevzon, A., Ventola, P., Keary, C. J., Heimer, G., Neul, J. L., Adera, M., & Jaeger, J. (2021). Development of an adapted clinical global impression scale for use in Angelman syndrome. Journal of Neurodevelopmental Disorders, 13(1), 3. https://doi.org/10.1186/s11689-020-09349-8
Leboeuf, F., Reay, J., Jones, R., & Sangeux, M. (2019). The effect on conventional gait model kinematics and kinetics of hip joint centre equations in adult healthy gait. Journal of Biomechanics, 87, 167–171. https://doi.org/10.1016/j.jbiomech.2019.02.010
Lilien, C., Gasnier, E., Gidaro, T., Seferian, A., Grelet, M., Vissiere, D., & Servais, L. (2019). Home-based monitor for gait and activity analysis. Journl of Visualized Experiments, (150). https://doi.org/10.3791/59668
Matsuura, T., Sutcliffe, J. S., Fang, P., Galjaard, R. J., Jiang, Y. H., Benton, C. S., Rommens, J. M., & Beaudet, A. L. (1997). De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nature Genetics, 15(1), 74–77. https://doi.org/10.1038/ng0197-74
Pierpont, E. I., Pierpont, M. E., Mendelsohn, N. J., Roberts, A. E., Tworog-Dube, E., & Seidenberg, M. S. (2009). Genotype differences in cognitive functioning in Noonan syndrome. Genes, Brain, and Behavior, 8(3), 275–282. https://doi.org/10.1111/j.1601-183X.2008.00469.x
Rodda, J., & Graham, H. K. (2001). Classification of gait patterns in spastic hemiplegia and spastic diplegia: A basis for a management algorithm. European Journal of Neurology, 8(Suppl 5), 98–108. https://doi.org/10.1046/j.1468-1331.2001.00042.x
Rodda, J. M., Graham, H. K., Nattrass, G. R., Galea, M. P., Baker, R., & Wolfe, R. (2006). Correction of severe crouch gait in patients with spastic diplegia with use of multilevel orthopaedic surgery. The Journal of Bone and Joint Surgery. American Volume, 88(12), 2653–2664. https://doi.org/10.2106/JBJS.E.00993
Rodda, J. M., Scheffer, I. E., McMahon, J. M., Berkovic, S. F., & Graham, H. K. (2012). Progressive gait deterioration in adolescents with Dravet syndrome. Archives of Neurology, 69(7), 873–878. https://doi.org/10.1001/archneurol.2011.3275
Schwartz, M. H., & Rozumalski, A. (2008). The gait deviation index: A new comprehensive index of gait pathology. Gait & Posture, 28(3), 351–357. https://doi.org/10.1016/j.gaitpost.2008.05.001
Shumway, S., Thurm, A., Swedo, S. E., Deprey, L., Barnett, L. A., Amaral, D. G., Rogers, S. J., & Ozonoff, S. (2011). Brief report: Symptom onset patterns and functional outcomes in young children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 41(12), 1727–1732. https://doi.org/10.1007/s10803-011-1203-3
Soorya, L., Leon, J., Trelles, M. P., & Thurm, A. (2018). Framework for assessing individuals with rare genetic disorders associated with profound intellectual and multiple disabilities (PIMD): The example of Phelan McDermid syndrome. The Clinical Neuropsychologist, 32(7), 1226–1255. https://doi.org/10.1080/13854046.2017.1413211
Sutcliffe, J. S., Jiang, Y. H., Galijaard, R. J., Matsuura, T., Fang, P., Kubota, T., Christian, S. L., Bressler, J., Cattanach, B., Ledbetter, D. H., & Beaudet, A. L. (1997). The E6-Ap ubiquitin-protein ligase (UBE3A) gene is localized within a narrowed Angelman syndrome critical region. Genome Research, 7(4), 368–377.
Vuillermin, C., Rodda, J., Rutz, E., Shore, B. J., Smith, K., & Graham, H. K. (2011). Severe crouch gait in spastic diplegia can be prevented: A population-based study. Journal of Bone and Joint Surgery. British Volume (London), 93(12), 1670–1675. https://doi.org/10.1302/0301-620X.93B12.27332
Williams, C. A. (2010). The behavioral phenotype of the Angelman syndrome. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 154C(4), 432–437. https://doi.org/10.1002/ajmg.c.30278
Wilson, R. B., Elashoff, D., Gouelle, A., Smith, B. A., Wilson, A. M., Dickinson, A., Safari, T., Hyde, C., & Jeste, S. S. (2020). Quantitative gait analysis in duplication 15q syndrome and nonsyndromic ASD. Autism Research, 13(7), 1102–1110. https://doi.org/10.1002/aur.2298
Yamasaki, K., Joh, K., Ohta, T., Masuzaki, H., Ishimaru, T., Mukai, T., Niikawa, N., Ogawa, M., Wagstaff, J., & Kishino, T. (2003). Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Human Molecular Genetics, 12(8), 837–847.
Zwanenburg, R. J., Ruiter, S. A., van den Heuvel, E. R., Flapper, B. C., & Van Ravenswaaij-Arts, C. M. (2016). Developmental phenotype in Phelan-McDermid (22q13.3 deletion) syndrome: A systematic and prospective study in 34 children. Journal of Neurodevelopmental Disorders, 8, 16. https://doi.org/10.1186/s11689-016-9150-0