Approximation approach; Complementary tools; Design basis; Design method; Fib model codes; Field methods; Reinforced concrete structures; Simple++; Stress field; Strut-and-tie model; Civil and Structural Engineering; Building and Construction; Materials Science (all); Mechanics of Materials
Abstract :
[en] The introduction of strut-and-tie models in fib Model Code 1990 as a design basis for discontinuity regions constituted a significant step toward promoting consistent design methods for reinforced concrete structures. In fib Model Code 2010, the scope was broadened through the stress field method that was introduced as a complementary tool. The present article summarizes subsequent evolutions in both methods, which will be incorporated in the upcoming fib Model Code 2020. Besides emphasizing their suitability for the structural design and assessment, their adaptability to the “Levels-of-approximation” approach is also depicted. This article presents the theoretical ground of both methods and looks on their potential for computer-modeling implementation. With this respect, several strategies are presented by discussing their advantages and optimum field of application.
Disciplines :
Civil engineering
Author, co-author :
Lourenço, Miguel Sério; JSJ Ltd, Lisbon, Portugal ; Instituto Politécnico de Setúbal, Setúbal, Portugal
Fernández Ruiz, Miguel ; School of Civil Engineering, Universidad Politécnica de Madrid, Madrid, Spain
Blaauwendraad, Johan; Delft University of Technology, Delft, Netherlands
Bousias, Stathis; Department of Civil Engineering, University of Patras, Patras, Greece
Hoang, Linh Cao; Department of Civil and Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
Mata-Falcón, Jaime ; Institute of Structural Engineering, ETH, Zurich, Switzerland
Meléndez, Carlos; Esteyco SA, Madrid, Spain
Mihaylov, Boyan ; Université de Liège - ULiège > Département ArGEnCo > Structures en béton
Ferreira, Miguel Pedrosa ; Grupo NOV, Leiria, Portugal
The authors of this article would like to express their gratitude to all members of fib's WP 2.2.4, particularly to Stein Atle Haugerud and Quentin Roubaty, for the fruitful and stimulating conversations held during writing of fib's Bulletin number 100, whose content is the basis of the present manuscript.
Ritter W. The Hennebique Construction Method (in German, “Die Bauweise Hennebique”), Schweizerische Bauzeitung, 1899. XXXIII, No. 7, 41–61.
Mörsch E. Reinforced concrete construction, theory and application (in German, “Der Eisenbetonbau, seine Theorie und Anwendung”). 3rd ed. Stuttgart: Verlag von Konrad Wittwer; 1908. p. 376.
Leonhardt F, Walther R. Deep beams (in German, “Wandartige Träger”), Deutscher Ausschuss für Stahlbeton, 1966, Heft 178, Ther Ber, 159.
Schlaich J, Weischede D. A practical method for methodical design and building in reinforced concrete (in German, “Ein praktisches Verfahren zum methodischen Bemessen und Konstruieren im Stahlbetonbau”), bulletin d'Information n° 150. Geneva: Comité Euro-International du Béton; 1982. p. 163.
Collins MP, Mitchell D. Rational approach to shear design--the 1984 Canadian code provisions. J Proc. 1986;83(6), p. 925–933.
CEB-FIP. Model Code 90, CEB-FIP Bulletins N°213/214. London: Thomas Telford Ltd.; 1993. p. 460.
Drucker DC. On structural concrete and the theorems of limit analysis, publications, International Association for Bridge and Structural Engineering, Zurich: IABSE Publications. Vol 21; 1961. p. 49–59.
Nielsen MP, Hoang LC. Limit analysis and concrete plasticity. 3rd ed. Boca Raton: CRC Press; 2016. p. 796.
Nielsen MP, Braestrup MW, Bach F. Rational analysis of shear in reinforced concrete be.ms, IABSE Colloquium Proceedings, Bergamo, Italy P-15; Vol. 2, 16, 1978.
Thürlimann B. Plastic Analysis of Reinforced Concrete Beams. Vol 28. Copenhagen, Denmark: IABSE Colloquium; 1979. p. 71–90.
Marti P. Truss models in detailing. Concrete International. 1985;7:66–73.
Schlaich J, Schäfer K, Jennewein M. Toward a consistent design of structural concrete. Prestressed Concrete Institute Journal, 1987.
Fernández RM, Muttoni A. On development of suitable stress fields for structural concrete. ACI Struct J. 2007;104(4):495–500.
Muttoni A, Fernández Ruiz M, Niketić F. Design versus assessment of concrete structures using stress fields and strut-and-tie models. Am Concrete Inst Struct J. 2015;112(5):605–15.
Mata-Falcón J, Tran DT, Kaufmann W, Navrátil J. Computer-aided stress field analysis of discontinuity concrete regions, proceedings of the computational modelling of concrete and concrete structures conference (EURO-C 2018). Bad Hofgastein, Austria: CRC Press; 2018. p. 641–50.
Krabbenhøft K, Lyamin AV, Sloan SW. Formulation and solution of some plasticity problems as conic programs. Int J Solids Struct. 2007;44:1533–49.
fib. Model Code for Concrete Structures 2010. Lausanne, Switzerland: Ernst & Sohn; 2013. p. 434.
fib. Working group 2.2.4. Design and assessment with strut-and-tie models and stress fields: from simple calculations to detailed numerical analysis. fib Structural Concrete Federation, Bulletin No 100, 2021, 235.
Muttoni A. The applicabilty of the theory of plasticity to design of reinforced concrete (in German: "die Anwendbarkeit der Plastizitätstheorie in der Bemessung von Stahlbeton"), No 176. Basel, Switzerland: Birkhäuser Verlag, Institut für Baustatik und Konstruktion ETH Zürich; 1990. p. 164.
Vecchio FJ, Collins MP. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J Proc. 1986;83(2):219–31.
ACI Committee. ACI 318–14 building code requirements for structural concrete and commentary, ACI Committee 318. Detroit: American Concrete Institute; 1724.
Kostic N. Topology of stress fields for the design of reinforced concrete structures, Doctoral dissertation. EPFL Lausanne, Switzerland; 2009.
Ferreira M, Almeida JF, Lourenço M. Modelling bond within elasto-plastic stress fields (EPSF) models. Fib symposium, innovations in materials, design and structures. In Derkowski W, et al. Proceedings of the Symposium Krakow: Gdańsk University of Technology; 2019.
Kaufmann W, Mata-Falcón J, Beck A. Future directions for research on shear in structural concrete. Fib bulletin 85: towards a rational understanding of shear in beams and slabs, Lausanne, Switzerland: fib publications; 2018.
Kaufmann W, Mata-Falcón J, Weber M, Galkovski T, Tran, Kabelac J, Konecny M, et al. Compatible stress field design of structural concrete: principles and validation, Zurich, Switzerland: ETH Zurich and IDEA StatiCa s.r.o, ISBN 978–3–906916-95-8; 2020. p. 158.
Maekawa KH, Okamura H, Pimanmas A. Non-linear mechanics of reinforced concrete. Boca Raton: CRC Press,; 2003.
Bažant Z, Adley MD, Carol I, Jirásek M, Akers SA, Rohani B, et al. Large-strain generalization of microplane model for concrete and application. ASCE J Eng Mech. 2000;126(9), p. 971–980.
Vecchio FJ. Disturbed stress field model for reinforced concrete: formulation. ASCE J Struct Eng. 2000;126(9):1070–7.
Valeri P, Fernández Ruiz M, Muttoni A. Modelling of textile reinforced concrete in bending and shear with elastic-cracked stress fields. Eng Struct. 2020;215:110664.
Campana S, Muttoni A. Analysis and design of an innovative solution for tunnels using elastic-plastic stress fields, proceeding of the 8th fib-PhD symposium. Copenhagen, Denmark: Technical University of Denmark DTU; 2010. p. 75–80.
de Saint-Venant B. Comptes Rendus. 1870;70:473.
Lévy M. Mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l'élasticité pourrait les ramener à leur premier état. CR Acad Sci Paris. 1870;70:1323–5.
Garbelini C. Advances in the soil-structure interaction analysis – from surface footings to thermoactive deep foundations, PhD thesis. École Polytechnique Fédérale de Lausanne, Switzerland; 2020. p. 303.
Prager W. The theory of plastic flow versus theory of plastic deformation. J Appl Phys. 1948;19:540–3.
Argirova G, Fernández Ruiz M, Muttoni A. How simple can nonlinear finite element modelling be for structural concrete? Vol 66, Extra 1, m013. Spain: Informes de la Construcción, IETCC-CSIC; 2014. p. 1–8.
Yu Q, Valeri P, Fernández Ruiz M, Muttoni A. A consistent safety format and design approach for brittle systems and application to textile reinforced concrete structures. Eng Struct. 2021;249:113306.
Marti P, Alvarez M, Kaufmann W, Sigrist V. Tension chord model for structural concrete. Struct Eng Int. 1998;8(4):287–98.
Sigrist V. Zum Verformungsvermögen von Stahlbetonträgern. Vol 210. Zurich, Switzerland: ETH Zurich; 1995.
Grierson DE, Gladwell GML. Collapse load analysis using linear programming. ASCE J Struct Div. 1971;97:1561–73.
Anderheggen E, Knöpfel H. Finite element limit analysis using linear programming. Int J Solid Struct. 1972;8(1972):1413–31.
Makrodimopoulos A, Martin CM. Lower bound limit analysis of cohesive-frictional materials using second-order cone programming. Int J for Num Meth In Eng. 2006;66(4):604–34.
Bispos C, Pardalos P. Second-order cone and semi-definite representation of material failure criteria. J Optimiz Theory Appl. 2007;134(2):275–301.
Larsen, KP. Numerical limit analysis of reinforced concrete structures. Ph.D. thesis, DTU, Dept. of Civil Eng., 2010.
Herfelt MA. Numerical limit analysis of precast concrete structures. PhD thesis, DTU, Copenhagen, Denmark: Dept. of Civil Eng., 2017.
Herfelt MA, Poulsen PN, Hoang LC, Jensen JF. Lower bound plane stress element for modelling 3D structures. Proc Inst Civil Eng Eng Comput Mech. 2017;170(3):107–17.
Jensen TW, Poulsen PN, Hoang LC. Layer model for finite element limit analysis of concrete slabs with shear reinforcement. Eng Struct. 2019;195:51–61.
Krenk S, Damkilde L. Høyer, O limit analysis and optimal design of plates with equilibrium elements. J Engng Mech. 1994;120:1237–54.
Andersen MEM, Poulsen PN, Olesen JF. Finite-element limit analysis for solid modeling of reinforced concrete. J Struct Eng. 2021;147(5):2021.
Lourenço M, Almeida J. Adaptive stress field models: assessment of design models. Closure ACI Struct J. 2013;110(6), p.1109–1124.
Blaauwendraad J. Stringer-panel models in structural concrete: Applied to D-region Design. Berlin, Germany: Springer Briefs in Applied Sciences and Technology; 2018. p. 99.
fib. Working party 1.1-3, design examples for strut-and-tie models, fib, structural concrete federation, Bulletin No 61, 2011, 219.
Meléndez C, Miguel PF, Pallarés L. A simplified approach for the ultimate limit state analysis of three-dimensional reinforced concrete elements. Eng Struct. 2016;123:330–40.
Meléndez C. A finite element-based approach for the analysis and design of 3D reinforced concrete elements and its application to D-regions, PhD Dissertation. Valencia, Spain: Universitat Politècnica de València; 2017.
Vestergaard D, Larsen KP, Hoang LC, Poulsen PN, Feddersen B. Design oriented elasto-plastic analysis of reinforced concrete structures with in-plane forces applying convex optimization. Struct Concre. 2021;22(6):3272–87.
Vecchio FJ, Selby R. Toward compression-field analysis of reinforced concrete solids. J Struct Eng. 1991;117(6):1740–58.