Whole brain surface-based morphometry and tract-based spatial statistics in migraine with aura patients: difference between pure visual and complex auras.
Abagnale, Chiara; Di Renzo, Antonio; Sebastianelli, Gabrieleet al.
2023 • In Frontiers in Human Neuroscience, 17, p. 1146302
[en] [en] BACKGROUND: The migrainous aura has different clinical phenotypes. While the various clinical differences are well-described, little is known about their neurophysiological underpinnings. To elucidate the latter, we compared white matter fiber bundles and gray matter cortical thickness between healthy controls (HC), patients with pure visual auras (MA) and patients with complex neurological auras (MA+).
METHODS: 3T MRI data were collected between attacks from 20 patients with MA and 15 with MA+, and compared with those from 19 HCs. We analyzed white matter fiber bundles using tract-based spatial statistics (TBSS) of diffusion tensor imaging (DTI) and cortical thickness with surface-based morphometry of structural MRI data.
RESULTS: Tract-based spatial statistics showed no significant difference in diffusivity maps between the three subject groups. As compared to HCs, both MA and MA+ patients had significant cortical thinning in temporal, frontal, insular, postcentral, primary and associative visual areas. In the MA group, the right high-level visual-information-processing areas, including lingual gyrus, and the Rolandic operculum were thicker than in HCs, while in the MA+ group they were thinner.
DISCUSSION: These findings show that migraine with aura is associated with cortical thinning in multiple cortical areas and that the clinical heterogeneity of the aura is reflected by opposite thickness changes in high-level visual-information-processing, sensorimotor and language areas.
Disciplines :
Neurology
Author, co-author :
Abagnale, Chiara; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
Di Renzo, Antonio; IRCCS-Fondazione Bietti, Rome, Italy
Sebastianelli, Gabriele; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
Casillo, Francesco; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
Tinelli, Emanuele; Unit of Neuroradiology, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
Giuliani, Giada; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
Tullo, Maria Giulia; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
Serrao, Mariano; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
Whole brain surface-based morphometry and tract-based spatial statistics in migraine with aura patients: difference between pure visual and complex auras.
Ambrosini A. de Noordhout A. M. Alagona G. Dalpozzo F. Schoenen J. (1999). Impairment of neuromuscular transmission in a subgroup of migraine patients. Neurosci. Lett. 276 201–203. 10.1016/s0304-3940(99)00820-4 10612640
Andersson J. L. R. Skare S. Ashburner J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. Neuroimage 20 870–888. 10.1016/S1053-8119(03)00336-7 14568458
Ashburner J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage 38 95–113. 10.1016/J.NEUROIMAGE.2007.07.007 17761438
Bach M. Laun F. B. Leemans A. Tax C. M. W. Biessels G. J. Stieltjes B. et al. (2014). Methodological considerations on tract-based spatial statistics (TBSS). Neuroimage 100 358–369. 10.1016/J.NEUROIMAGE.2014.06.021 24945661
Bastiani M. Cottaar M. Fitzgibbon S. P. Suri S. Alfaro-Almagro F. Sotiropoulos S. N. et al. (2019). Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction. Neuroimage 184 801–812. 10.1016/j.neuroimage.2018.09.073 30267859
Brühl A. B. Hänggi J. Baur V. Rufer M. Delsignore A. Weidt S. et al. (2014). Increased cortical thickness in a frontoparietal network in social anxiety disorder. Hum. Brain Mapp. 35:2966. 10.1002/HBM.22378 24039023
Coghill R. C. Sang C. N. Maisog J. M. Iadarola M. J. (1999). Pain intensity processing within the human brain: A bilateral, distributed mechanism. J. Neurophysiol. 82 1934–1943. 10.1152/jn.1999.82.4.1934 10515983
Coppola G. Bracaglia M. Di Lenola D. Di Lorenzo C. Serrao M. Parisi V. et al. (2015). Visual evoked potentials in subgroups of migraine with aura patients. J. Headache Pain 16:92. 10.1186/s10194-015-0577-6 26527348
Coppola G. Corbelli I. Di Renzo A. Chiappiniello A. Chiarini P. Parisi V. et al. (2022). Visual stimulation and frequency of focal neurological symptoms engage distinctive neurocognitive resources in migraine with aura patients: A study of resting-state functional networks. J. Headache Pain 23:80. 10.1186/s10194-022-01446-4 35820799
Coppola G. Di Lorenzo C. Parisi V. Lisicki M. Serrao M. Pierelli F. (2019). Clinical neurophysiology of migraine with aura. J. Headache Pain 20:42. 10.1186/s10194-019-0997-9 31035929
Coppola G. Di Lorenzo C. Schoenen J. Pierelli F. (2013). Habituation and sensitization in primary headaches. J. Headache Pain 14:65. 10.1186/1129-2377-14-65 23899115
Coppola G. Di Renzo A. Tinelli E. Petolicchio B. Parisi V. Serrao M. et al. (2021). Thalamo-cortical networks in subtypes of migraine with aura patients. J. Headache Pain 22:58. 10.1186/s10194-021-01272-0 34147064
Coppola G. Parisi V. Di Renzo A. Pierelli F. (2020). Cortical pain processing in migraine. J. Neural Transm. 127 551–566. 10.1007/s00702-019-02089-7 31598777
Coppola G. Serrao M. Currà A. Di Lorenzo C. Vatrika M. Parisi V. et al. (2010). Tonic pain abolishes cortical habituation of visual evoked potentials in healthy subjects. J. Pain 11 291–296. 10.1016/j.jpain.2009.08.012 20015701
Corbetta M. Shulman G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. 3 201–215.
Dahnke R. Yotter R. A. Gaser C. (2013). Cortical thickness and central surface estimation. Neuroimage 65 336–348. 10.1016/J.NEUROIMAGE.2012.09.050 23041529
DaSilva A. F. M. Granziera C. Tuch D. S. Snyder J. Vincent M. Hadjikhani N. (2007). Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. Neuroreport 18 301–305. 10.1097/WNR.0b013e32801776bb 17435592
Faragó P. Tóth E. Kocsis K. Kincses B. Veréb D. Király A. et al. (2019). Altered resting state functional activity and microstructure of the white matter in migraine with aura. Front. Neurol. 10:1039. 10.3389/fneur.2019.01039 31632336
Floery D. Vosko M. R. Fellner F. A. Fellner C. Ginthoer C. Gruber F. et al. (2012). Acute-onset migrainous aura mimicking acute stroke: MR perfusion imaging features. Am. J. Neuroradiol. 33 1546–1552. 10.3174/ajnr.A3020 22517281
Förster A. Wenz H. Kerl H. U. Brockmann M. A. Groden C. (2014). Perfusion patterns in migraine with aura. Cephalalgia 34 870–876. 10.1177/0333102414523339 24554619
Granziera C. Daducci A. Romascano D. Roche A. Helms G. Krueger G. et al. (2014). Structural abnormalities in the thalamus of migraineurs with aura: A multiparametric study at 3 T. Hum. Brain Mapp. 35 1461–1468. 10.1002/hbm.22266 23450507
Granziera C. DaSilva A. F. M. Snyder J. Tuch D. S. Hadjikhani N. (2006). Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med. 3:e402. 10.1371/journal.pmed.0030402 17048979
Guarnera A. Bottino F. Napolitano A. Sforza G. Cappa M. Chioma L. et al. (2021). Early alterations of cortical thickness and gyrification in migraine without aura: A retrospective MRI study in pediatric patients. J. Headache Pain 22:79. 10.1186/s10194-021-01290-y 34294048
Huang S. Li Y. Zhang W. Zhang B. Liu X. Mo L. et al. (2015). Multisensory competition is modulated by sensory pathway interactions with fronto-sensorimotor and default-mode network regions. J. Neurosci. 35 9064–9077. 10.1523/JNEUROSCI.3760-14.2015 26085631
Iannetti G. D. Zambreanu L. Wise R. G. Buchanan T. J. Huggins J. P. Smart T. S. et al. (2005). Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc. Natl. Acad. Sci. U.S.A. 102 18195–18200. 10.1073/pnas.0506624102 16330766
ICHD (2018). Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38 1–211. 10.1177/0333102417738202 29368949
Indefrey P. Brown C. M. Hellwig F. Amunts K. Herzog H. Seitz R. J. et al. (2001). A neural correlate of syntactic encoding during speech production. Proc. Natl. Acad. Sci. U.S.A. 98 5933–5936. 10.1073/pnas.101118098 11331773
Jenkinson M. Beckmann C. F. Behrens T. E. J. Woolrich M. W. Smith S. M. (2012). FSL. Neuroimage 62 782–790. 10.1016/j.neuroimage.2011.09.015 21979382
Koppel L. Novembre G. Kämpe R. Savallampi M. Morrison I. (2022). Prediction and action in cortical pain processing. Cereb. Cortex. 33, 794–810. 10.1093/cercor/bhac102 35289367
Leão A. A. P. (1944). Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7 359–390.
Niddam D. M. Lai K.-L. Fuh J.-L. Chuang C.-Y. N. Chen W.-T. Wang S.-J. (2016). Reduced functional connectivity between salience and visual networks in migraine with aura. Cephalalgia 36 53–66. 10.1177/0333102415583144 25888585
Pace-Schott E. F. (2005). “The neurobiology of dreaming,” in Principles and practice of sleep medicine, eds Kryger M. H. Roth T. Dement W. C. (Amsterdam: Elsevier Inc.), 551–564. 10.1016/B0-72-160797-7/50051-3
Patra A. Kaur H. Chaudhary P. Asghar A. Singal A. (2021). Morphology and morphometry of human paracentral lobule: An anatomical study with its application in neurosurgery. Asian J. Neurosurg. 16 349–354. 10.4103/ajns.ajns_505_20 34268163
Petrusic I. Dakovic M. Kacar K. Zidverc-Trajkovic J. (2018). Migraine with aura: Surface-based analysis of the cerebral cortex with magnetic resonance imaging. Korean J. Radiol. 19 767–776. 10.3348/KJR.2018.19.4.767 29962883
Petrušić I. Daković M. Kačar K. Mićić O. Zidverc-Trajković J. (2018). Migraine with aura and white matter tract changes. Acta Neurol. Belg. 118 485–491. 10.1007/s13760-018-0984-y 30006859
Petrusic I. Jovanovic V. Kovic V. Savic A. M. (2022). P3 latency as a biomarker for the complexity of migraine with aura: Event-related potential study. Cephalalgia 42 1022–1030. 10.1177/03331024221090204 35332814
Petrusic I. Viana M. Dakovic M. Zidverc-Trajkovic J. (2019). Application of the Migraine Aura Complexity Score (MACS): Clinical and neuroimaging study. Front. Neurol. 10:1112. 10.3389/fneur.2019.01112 31681162
Rasmussen B. K. Olesen J. (1992). Migraine with aura and migraine without aura: An epidemiological study. Cephalalgia 12 221–228.
Rocca M. A. Pagani E. Colombo B. Tortorella P. Falini A. Comi G. et al. (2008). Selective diffusion changes of the visual pathways in patients with migraine: A 3-T tractography study. Cephalalgia 28 1061–1068. 10.1111/j.1468-2982.2008.01655.x 18644035
Sándor P. Dydak U. Schoenen J. Kollias S. S. Hess K. Boesiger P. et al. (2005). MR-spectroscopic imaging during visual stimulation in subgroups of migraine with aura. Cephalalgia 25 507–518. 10.1111/j.1468-2982.2005.00900.x 15955037
Schankin C. Maniyar F. H. Sprenger T. Chou D. E. Eller M. Goadsby P. J. (2014). The relation between migraine, typical migraine aura and “visual snow.” Headache 54 957–966.
Silvestro M. Tessitore A. Di Nardo F. Scotto di Clemente F. Trojsi F. Cirillo M. et al. (2022). Functional connectivity changes in complex migraine aura: Beyond the visual network. Eur. J. Neurol. 29 295–304. 10.1111/ene.15061 34382315
Smith S. M. (2002). Fast robust automated brain extraction. Hum. Brain Mapp. 17 143–155. 10.1002/hbm.10062 12391568
Smith S. M. Jenkinson M. Johansen-Berg H. Rueckert D. Nichols T. E. Mackay C. E. et al. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 31 1487–1505. 10.1016/j.neuroimage.2006.02.024 16624579
Smith S. M. Jenkinson M. Woolrich M. W. Beckmann C. F. Behrens T. E. J. Johansen-Berg H. et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl. 1) S208–S219. 10.1016/j.neuroimage.2004.07.051 15501092
Sutoko S. Atsumori H. Obata A. Funane T. Kandori A. Shimonaga K. et al. (2020). Lesions in the right rolandic operculum are associated with self-rating affective and apathetic depressive symptoms for post-stroke patients. Sci. Rep. 10 1–10. 10.1038/s41598-020-77136-5 33219292
Szabó N. Faragó P. Király A. Veréb D. Csete G. Tóth E. et al. (2018). Evidence for plastic processes in migraine with aura: A diffusion weighted MRI study. Front. Neuroanat. 11:138. 10.3389/fnana.2017.00138 29387002
Tedeschi G. Russo A. Conte F. Corbo D. Caiazzo G. Giordano A. et al. (2016). Increased interictal visual network connectivity in patients with migraine with aura. Cephalalgia 36 139–147. 10.1177/0333102415584360 25926619
Triarhou L. C. (2021). Cytoarchitectonics of the rolandic operculum: Morphofunctional ponderings. Brain Struct. Funct. 226 941–950. 10.1007/s00429-021-02258-z 33743075
Uddin L. Q. Yeo B. T. T. Spreng R. N. (2019). Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 32 926–942. 10.1007/s10548-019-00744-6 31707621
Veréb D. Szabó N. Tuka B. Tajti J. Király A. Faragó P. et al. (2020). Temporal instability of salience network activity in migraine with aura. Pain 161 856–864. 10.1097/j.pain.0000000000001770 31815918
Vossel S. Geng J. J. Fink G. R. (2014). Dorsal and ventral attention systems. Neuroscientist 20 150–159. 10.1177/1073858413494269 23835449
Wada S. Honma M. Masaoka Y. Yoshida M. Koiwa N. Sugiyama H. et al. (2021). Volume of the right supramarginal gyrus is associated with a maintenance of emotion recognition ability. PLoS One 16:e0254623. 10.1371/journal.pone.0254623 34293003
Wolf M. E. Okazaki S. Eisele P. Rossmanith C. Gregori J. Griebe M. et al. (2018). Arterial spin labeling cerebral perfusion magnetic resonance imaging in migraine aura: An observational study. J. Stroke Cerebrovasc. Dis. 27 1262–1266. 10.1016/j.jstrokecerebrovasdis.2017.12.002 29331612
Woolrich M. W. Jbabdi S. Patenaude B. Chappell M. Makni S. Behrens T. et al. (2009). Bayesian analysis of neuroimaging data in FSL. Neuroimage 45 S173–S186. 10.1016/j.neuroimage.2008.10.055 19059349
Yoshino A. Okamoto Y. Doi M. Okada G. Takamura M. Ichikawa N. et al. (2017). Functional alterations of postcentral gyrus modulated by angry facial expressions during intraoral tactile stimuli in patients with burning mouth syndrome: A functional magnetic resonance imaging study. Front. Psychiatry 8:224. 10.3389/fpsyt.2017.00224 29163243
Yotter R. A. Dahnke R. Thompson P. M. Gaser C. (2011a). Topological correction of brain surface meshes using spherical harmonics. Hum. Brain Mapp. 32 1109–1124. 10.1002/HBM.21095 20665722
Yotter R. A. Thompson P. M. Gaser C. (2011b). Algorithms to improve the reparameterization of spherical mappings of brain surface meshes. J. Neuroimaging 21 e134–e147. 10.1111/j.1552-6569.2010.00484.x 20412393
Zhang D. Huang X. Su W. Chen Y. Wang P. Mao C. et al. (2020). Altered lateral geniculate nucleus functional connectivity in migraine without aura: A resting-state functional MRI study. J. Headache Pain 21:17.
Zhao Y. Zhang L. Rutgen M. Sladky R. Lamm C. (2021). Neural dynamics between anterior insular cortex and right supramarginal gyrus dissociate genuine affect sharing from perceptual saliency of pretended pain. Elife 10:e69994. 10.7554/eLife.69994 34409940
Zimmermann M. Mars R. B. de Lange F. P. Toni I. Verhagen L. (2018). Is the extrastriate body area part of the dorsal visuomotor stream? Brain Struct. Funct. 223 31–46. 10.1007/s00429-017-1469-0 28702735