[en] Emerging evidence suggest migraine is a response to cerebral energy deficiency or oxidative stress in the brain. Beta-hydroxybutyrate (BHB) is likely able to circumvent some of the meta-bolic abnormalities reported in migraine. Exogenous BHB was given to test this assumption and, in this post-hoc analysis, multiple metabolic biomarkers were identified to predict clinical improvements. A randomized clinical trial, involving 41 patients with episodic migraine. Each treatment period was 12 weeks long, followed by eight weeks of washout phase / second run-in phase before entering the corresponding second treatment period. The primary endpoint was the number of migraine days in the last 4 weeks of treatment adjusted for baseline. BHB re-sponders were identified (those with at least a 3-day reduction in migraine days over placebo) and its predictors were evaluated using Akaike's Information Criterion (AIC) stepwise boot-strapped analysis and logistic regression. Responder analysis showed that metabolic markers could identify a "metabolic migraine" subgroup, which responded to BHB with a 5.7 migraine days reduction compared to the placebo. This analysis provides further support for a "metabolic migraine" subtype. Additionally, these analyses identified low-cost and easily accessible biomarkers that could guide recruitment in future research on this subgroup of patients.This study is part of the trial registration: ClinicalTrials.gov: NCT03132233, registered on 27.04.2017, https://clinicaltrials.gov/ct2/show/NCT03132233.
Disciplines :
Neurology
Author, co-author :
Gross, Elena C; Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland. elena.gross@oxfordalumni.org
Putananickal, Niveditha; Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
Orsini, Anna-Lena; Division of Pediatric Neurology, University Children's Hospital Basel (UKBB) & Neurology Department, University Hospital Basel (USB), University of Basel, Basel, Switzerland
Schoenen, Jean ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Fischer, Dirk; Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
Soto-Mota, Adrian; Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Tlalpan, Mexico ; School of Medicine, Tecnologico de Monterrey, Mexico City, Mexico
Language :
English
Title :
Defining metabolic migraine with a distinct subgroup of patients with suboptimal inflammatory and metabolic markers.
Stovner, L. J., Hoff, J. M., Svalheim, S. & Gilhus, N. E. Neurological disorders in the Global Burden of Disease 2010 study. Acta Neurol. Scand. 129, 1–6 (2014). DOI: 10.1111/ane.12229
Gray, P. A. & Burtness, H. I. Hypoglycemic headache*. Endocrinology 19, 549–560 (1935). DOI: 10.1210/endo-19-5-549
Gross, E. C., Lisicki, M., Fischer, D., Sándor, P. S. & Schoenen, J. The metabolic face of migraine—From pathophysiology to treatment. Nat. Rev. Neurol. 15, 627–643 (2019). DOI: 10.1038/s41582-019-0255-4
Barbiroli, B. et al. Abnormal brain and muscle energy metabolism shown by 31P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology 42, 1209–1214 (1992). DOI: 10.1212/WNL.42.6.1209
Kim, J. H. et al. Interictal metabolic changes in episodic migraine: A voxel-based FDG-PET study. Cephalalgia 30, 53–61 (2010). DOI: 10.1111/j.1468-2982.2009.01890.x
Lodi, R. et al. Deficit of brain and skeletal muscle bioenergetics and low brain magnesium in juvenile migraine: An in vivo 31p magnetic resonance spectroscopy interictal study. Pediatr. Res. 42, 866–871 (1997). DOI: 10.1203/00006450-199712000-00024
Lodi, R. et al. Deficient energy metabolism is associated with low free magnesium in the brains of patients with migraine and cluster headache. Brain Res. Bull. 54, 437–441 (2001). DOI: 10.1016/S0361-9230(01)00440-3
Montagna, P. et al. 31P-magnetic resonance spectroscopy in migraine without aura. Neurology 44, 666–669 (1994). DOI: 10.1212/WNL.44.4.666
Reyngoudt, H., Achten, E. & Paemeleire, K. Magnetic resonance spectroscopy in migraine: What have we learned so far?. Cephalalgia 32, 845–859 (2012). DOI: 10.1177/0333102412452048
Schulz, U. G. et al. Association between cortical metabolite levels and clinical manifestations of migrainous aura: An MR-spectroscopy study. Brain 130, 3102–3110 (2007). DOI: 10.1093/brain/awm165
Welch, K. M., Levine, S. R., D’Andrea, G., Schultz, L. R. & Helpern, J. A. Preliminary observations on brain energy metabolism in migraine studied by in vivo phosphorus 31 NMR spectroscopy. Neurology 39, 538–541 (1989). DOI: 10.1212/WNL.39.4.538
Lodi, R. et al. Quantitative analysis of skeletal muscle bioenergetics and proton efflux in migraine and cluster headache. J. Neurol. Sci. 146, 73–80 (1997). DOI: 10.1016/S0022-510X(96)00287-0
Barbiroli, B. et al. Complicated migraine studied by phosphorus magnetic resonance spectroscopy. Cephalalgia 10, 263–272 (1990). DOI: 10.1046/j.1468-2982.1990.1005263.x
Reyngoudt, H., Paemeleire, K., Descamps, B., De Deene, Y. & Achten, E. 31P-MRS demonstrates a reduction in high-energy phosphates in the occipital lobe of migraine without aura patients. Cephalalgia 31, 1243–1253 (2011). DOI: 10.1177/0333102410394675
Gross, E. C. et al. Mitochondrial function and oxidative stress markers in higher-frequency episodic migraine. Sci. Rep. 11, 4543 (2021). DOI: 10.1038/s41598-021-84102-2
Hockaday, J. M., Williamson, D. H. & Whitty, C. W. M. Blood-glucose levels and fatty-acid metabolism in migraine related to fasting. Lancet 297, 1153–1156 (1971). DOI: 10.1016/S0140-6736(71)91662-X
Shaw, S. W., Johnson, R. H. & Keogh, H. J. Metabolic changes during glucose tolerance tests in migraine attacks. J. Neurol. Sci. 33, 51–59 (1977). DOI: 10.1016/0022-510X(77)90181-2
Dexter, J. D., Roberts, J. & Byer, J. A. The five hour glucose tolerance test and effect of low sucrose diet in migraine. Headache 18, 91–94 (1978). DOI: 10.1111/j.1526-4610.1978.hed1802091.x
Wang, X. et al. Are glucose and insulin metabolism and diabetes associated with migraine? A community-based, case-control study. J. Oral Facial Pain Headache 31, 240–250 (2017). DOI: 10.11607/ofph.1843
Rainero, I. et al. Insulin sensitivity is impaired in patients with migraine. Cephalalgia 25, 593–597 (2005). DOI: 10.1111/j.1468-2982.2005.00928.x
Fava, A. et al. Chronic migraine in women is associated with insulin resistance: A cross-sectional study. Eur. J. Neurol. 21, 267–272 (2014). DOI: 10.1111/ene.12289
Cavestro, C. et al. Insulin metabolism is altered in migraineurs: A new pathogenic mechanism for migraine?. Headache 47, 1436–1442 (2007). DOI: 10.1111/j.1526-4610.2007.00719.x
Shaik, M. M. & Gan, S. H. Vitamin supplementation as possible prophylactic treatment against migraine with aura and menstrual migraine. Biomed. Res. Int. 2015, 469529 (2015). DOI: 10.1155/2015/469529
Dahri, M., Hashemilar, M., Asghari-Jafarabadi, M. & Tarighat-Esfanjani, A. Efficacy of coenzyme Q10 for the prevention of migraine in women: A randomized, double-blind, placebo-controlled study. Eur. J. Integr. Med. 16, 8–14 (2017). DOI: 10.1016/j.eujim.2017.10.003
Dahri, M., Tarighat-Esfanjani, A., Asghari-Jafarabadi, M. & Hashemilar, M. Oral coenzyme Q10 supplementation in patients with migraine: Effects on clinical features and inflammatory markers. Nutr. Neurosci. 0, 1–9 (2018).
Sándor, P. S. et al. Efficacy of coenzyme Q10 in migraine prophylaxis: A randomized controlled trial. Neurology 64, 713–715 (2005). DOI: 10.1212/01.WNL.0000151975.03598.ED
Hajihashemi, P., Askari, G., Khorvash, F., Reza Maracy, M. & Nourian, M. The effects of concurrent Coenzyme Q10, L-carnitine supplementation in migraine prophylaxis: A randomized, placebo-controlled, double-blind trial. Cephalalgia 10.1177/0333102418821661 (2019). DOI: 10.1177/0333102418821661
Shoeibi, A. et al. Effectiveness of coenzyme Q10 in prophylactic treatment of migraine headache: An open-label, add-on, controlled trial. Acta Neurol. Belg. 117, 103–109 (2017). DOI: 10.1007/s13760-016-0697-z
Rozen, T. et al. Open label trial of coenzyme Q10 as a migraine preventive. Cephalalgia 22, 137–141 (2002). DOI: 10.1046/j.1468-2982.2002.00335.x
Boehnke, C. et al. High-dose riboflavin treatment is efficacious in migraine prophylaxis: An open study in a tertiary care centre. Eur. J. Neurol. 11, 475–477 (2004). DOI: 10.1111/j.1468-1331.2004.00813.x
Condò, M., Posar, A., Arbizzani, A. & Parmeggiani, A. Riboflavin prophylaxis in pediatric and adolescent migraine. J Headache Pain 10, 361–365 (2009). DOI: 10.1007/s10194-009-0142-2
Gaul, C., Diener, H.-C., Danesch, U., Migravent® Study Group, on behalf of the M. S. Improvement of migraine symptoms with a proprietary supplement containing riboflavin, magnesium and Q10: A randomized, placebo-controlled, double-blind, multicenter trial. J. Headache Pain 16, 516 (2015). DOI: 10.1186/s10194-015-0516-6
Schoenen, J., Jacquy, J. & Lenaerts, M. Effectiveness of high-dose riboflavin in migraine prophylaxis. A randomized controlled trial. Neurology 50, 466–470 (1998). DOI: 10.1212/WNL.50.2.466
Rahimdel, A., Mellat, A., Zeinali, A., Jafari, E. & Ayatollahi, P. Comparison between intravenous sodium valproate and subcutaneous sumatriptan for treatment of acute migraine attacks; double-blind randomized clinical trial. Iran J. Med. Sci. 39, 171–177 (2014).
Thompson, D. F. & Saluja, H. S. Prophylaxis of migraine headaches with riboflavin: A systematic review. J. Clin. Pharm. Ther. 42, 394–403 (2017). DOI: 10.1111/jcpt.12548
Di Lorenzo, C. et al. Mitochondrial DNA haplogroups influence the therapeutic response to riboflavin in migraineurs. Neurology 72, 1588–1594 (2009). DOI: 10.1212/WNL.0b013e3181a41269
Chiu, H.-Y., Yeh, T.-H., Huang, Y.-C. & Chen, P.-Y. Effects of intravenous and oral magnesium on reducing migraine: A meta-analysis of randomized controlled trials. Pain Physician 19, E97-112 (2016).
Magis, D. et al. A randomized double-blind placebo-controlled trial of thioctic acid in migraine prophylaxis. Headache 47, 52–57 (2007). DOI: 10.1111/j.1526-4610.2006.00626.x
Cavestro, C. et al. Alpha-lipoic acid shows promise to improve migraine in patients with insulin resistance: A 6-month exploratory study. J. Med. Food 21, 269–273 (2018). DOI: 10.1089/jmf.2017.0068
Ali, A. M., Awad, T. G. & Al-Adl, N. M. Efficacy of combined topiramate/thioctic acid therapy in migraine prophylaxis. Saudi Pharm. J. 18, 239–243 (2010). DOI: 10.1016/j.jsps.2010.07.006
Borkum, J. M. Migraine triggers and oxidative stress: A narrative review and synthesis. Headache 10.1111/head.12725 (2015). DOI: 10.1111/head.12725
Benemei, S., Fusi, C., Trevisan, G. & Geppetti, P. The TRPA1 channel in migraine mechanism and treatment. Br. J. Pharmacol. 171, 2552–2567 (2014). DOI: 10.1111/bph.12512
Kozai, D., Ogawa, N. & Mori, Y. Redox regulation of transient receptor potential channels. Antioxid. Redox Signal. 21, 971–986 (2014). DOI: 10.1089/ars.2013.5616
Strahlman, R. S. Can ketosis help migraine sufferers? A case report. Headache 46, 182 (2006). DOI: 10.1111/j.1526-4610.2006.00321_5.x
Di Lorenzo, C. et al. Diet transiently improves migraine in two twin sisters: Possible role of ketogenesis?. Funct. Neurol. 28, 305–308 (2013).
Maggioni, F., Margoni, M. & Zanchin, G. Ketogenic diet in migraine treatment: A brief but ancient history. Cephalalgia 31, 1150–1151 (2011). DOI: 10.1177/0333102411412089
Schnabel, T. G. An experience with a ketogenic dietary in migraine. Ann. Intern. Med. 2, 341 (1928). DOI: 10.7326/0003-4819-2-4-341
Di Lorenzo, C. et al. Migraine improvement during short lasting ketogenesis: A proof-of-concept study. Eur. J. Neurol. 10.1111/ene.12550 (2014). DOI: 10.1111/ene.12550
Di Lorenzo, C. et al. Cortical functional correlates of responsiveness to short-lasting preventive intervention with ketogenic diet in migraine: A multimodal evoked potentials study. J. Headache Pain 17, 58 (2016). DOI: 10.1186/s10194-016-0650-9
Bailey, E. E., Pfeifer, H. H. & Thiele, E. A. The use of diet in the treatment of epilepsy. Epilepsy Behav. 6, 4–8 (2005). DOI: 10.1016/j.yebeh.2004.10.006
Danial, N. N., Hartman, A. L., Stafstrom, C. E. & Thio, L. L. How does the ketogenic diet work? Four potential mechanisms. J. Child Neurol. 28, 1027–1033 (2013). DOI: 10.1177/0883073813487598
Stafstrom, C. E. & Rho, J. M. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front. Pharmacol. 3, 59 (2012). DOI: 10.3389/fphar.2012.00059
Barañano, K. W. & Hartman, A. L. The ketogenic diet: Uses in epilepsy and other neurologic illnesses. Curr. Treat. Options. Neurol. 10, 410–419 (2008). DOI: 10.1007/s11940-008-0043-8
Edmond, J., Robbins, R. A., Bergstrom, J. D., Cole, R. A. & de Vellis, J. Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J. Neurosci. Res. 18, 551–561 (1987). DOI: 10.1002/jnr.490180407
Dedkova, E. N. & Blatter, L. A. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front. Physiol. 5, 260 (2014). DOI: 10.3389/fphys.2014.00260
Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017). DOI: 10.1016/j.cmet.2016.12.022
Gross, E. C., Klement, R. J., Schoenen, J., D’Agostino, D. P. & Fischer, D. Potential protective mechanisms of ketone bodies in migraine prevention. Nutrients 11, 811 (2019). DOI: 10.3390/nu11040811
Nei, M., Ngo, L., Sirven, J. I. & Sperling, M. R. Ketogenic diet in adolescents and adults with epilepsy. Seizure 23, 439–442 (2014). DOI: 10.1016/j.seizure.2014.02.015
Reid, C. A., Mullen, S., Kim, T. H. & Petrou, S. Epilepsy, energy deficiency and new therapeutic approaches including diet. Pharmacol. Ther. 10.1016/j.pharmthera.2014.06.001 (2014). DOI: 10.1016/j.pharmthera.2014.06.001
de Almeida Rabello Oliveira, M. et al. Effects of short-term and long-term treatment with medium- and long-chain triglycerides ketogenic diet on cortical spreading depression in young rats. Neurosci. Lett. 434, 66–70 (2008). DOI: 10.1016/j.neulet.2008.01.032
Henderson, S. T. et al. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: A randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. 6, 31 (2009). DOI: 10.1186/1743-7075-6-31
Klepper, J., Leiendecker, B., Riemann, E. & Baumeister, F. A. The ketogenic diet in German-speaking countries: Update. Klin. Padiatr. 216, 277–285 (2003). DOI: 10.1055/s-2004-44906
Paoli, A., Bianco, A., Damiani, E. & Bosco, G. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed. Res. Int. 2014, 474296 (2014). DOI: 10.1155/2014/474296
Freeman, J. M. & Kossoff, E. H. Ketosis and the ketogenic diet, 2010: Advances in treating epilepsy and other disorders. Adv. Pediatr. 57, 315–329 (2010). DOI: 10.1016/j.yapd.2010.08.003
Liu, Y. C. & Wang, H.-S. Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets. Biomed. J. 36, 9–15 (2013). DOI: 10.4103/2319-4170.107154
Valayannopoulos, V. et al. Successful treatment of severe cardiomyopathy in glycogen storage disease type III with D, L-3-hydroxybutyrate, ketogenic and high-protein diet. Pediatr. Res. 70, 638–641 (2011). DOI: 10.1203/PDR.0b013e318232154f
Clarke, K. et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul. Toxicol. Pharmacol. 63, 401–408 (2012). DOI: 10.1016/j.yrtph.2012.04.008
Kossoff, E. H., Cervenka, M. C., Henry, B. J., Haney, C. A. & Turner, Z. A decade of the modified Atkins diet (2003–2013): Results, insights, and future directions. Epilepsy Behav. 29, 437–442 (2013). DOI: 10.1016/j.yebeh.2013.09.032
Newport, M. T., VanItallie, T. B., Kashiwaya, Y., King, M. T. & Veech, R. L. A new way to produce hyperketonemia: Use of ketone ester in a case of Alzheimer’s disease. Alzheimer’s Dement. 11, 99–103 (2015). DOI: 10.1016/j.jalz.2014.01.006
Douris, N. et al. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochem. Biophys. Acta 1852, 2056–2065 (2015).
Putananickal, N. et al. Efficacy and safety of exogenous beta-hydroxybutyrate for preventive treatment in episodic migraine: A single-centred, randomised, placebo-controlled, double-blind crossover trial. Cephalalgia 10.1177/03331024211043792 (2021). DOI: 10.1177/03331024211043792
Gross, E. et al. Efficacy and safety of exogenous ketone bodies for preventive treatment of migraine: A study protocol for a single-centred, randomised, placebo-controlled, double-blind crossover trial. Trials 20, 61 (2019). DOI: 10.1186/s13063-018-3120-7
The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia : an international journal of headache 33, 629–808 (2013).
Benz, T. et al. Translation, cross-cultural adaptation and reliability of the German version of the migraine disability assessment (MIDAS) questionnaire. Health Qual. Life Outcomes 16, 42 (2018). DOI: 10.1186/s12955-018-0871-5
Martin, M., Blaisdell, B., Kwong, J. W. & Bjorner, J. B. The short-form headache impact test (HIT-6) was psychometrically equivalent in nine languages. J. Clin. Epidemiol. 57, 1271–1278 (2004). DOI: 10.1016/j.jclinepi.2004.05.004
Zhu, Y. et al. The efficacy and safety of calcitonin gene-related peptide monoclonal antibody for episodic migraine: A meta-analysis. Neurol. Sci. 39, 2097–2106 (2018). DOI: 10.1007/s10072-018-3547-3
Stubbs, B. J. et al. On the metabolism of exogenous ketones in humans. Front. Physiol. 8, 848 (2017). DOI: 10.3389/fphys.2017.00848
Laffel, L. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab. Res. Rev. 15, 412–426 (1999). DOI: 10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8
Zhang, Y. et al. Ketosis proportionately spares glucose utilization in brain. J. Cereb. Blood Flow Metabol. 33, 1307–1311 (2013). DOI: 10.1038/jcbfm.2013.87
Wakai, A., Roberts, I. G., Schierhout, G. & Wakai, A. Mannitol for acute traumatic brain injury. Cochrane Database Syst. Rev. 10.1002/14651858.CD001049.pub2 (2005). DOI: 10.1002/14651858.CD001049.pub2
Schilte, C. et al. Mannitol improves brain tissue oxygenation in a model of diffuse traumatic brain injury*. Crit. Care Med. 43, 2212–2218 (2015). DOI: 10.1097/CCM.0000000000001137
Broekhuizen, R., Wouters, E. F. M., Creutzberg, E. C. & Schols, A. M. W. J. Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax 61, 17–22 (2006). DOI: 10.1136/thx.2005.041996
McAninch, E. A. & Bianco, A. C. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann. N. Y. Acad. Sci. 1311, 77–87 (2014). DOI: 10.1111/nyas.12374
Hanley, A. J. G. et al. Liver markers and development of the metabolic syndrome: The insulin resistance atherosclerosis study. Diabetes 54, 3140–3147 (2005). DOI: 10.2337/diabetes.54.11.3140
Norwitz, N. G., Jaramillo, J. G., Clarke, K. & Soto, A. Ketotherapeutics for neurodegenerative diseases. Int. Rev. Neurobiol. 155, 141–168. 10.1016/bs.irn.2020.02.003 (2020). DOI: 10.1016/bs.irn.2020.02.003