magnetic flux jumps, superconducting magnets, thermomagnetic instabilities
Abstract :
[en] Superconductors play a crucial role in the advancement of high-field electromagnets. Unfortunately, their performance can be compromised by thermomagnetic instabilities, wherein the interplay of rapid magnetic and slow heat diffusion can result in catastrophic flux jumps, eventually leading to irreversible damage. This issue has long plagued high-Jc Nb3Sn wires at the core of high-field magnets. In this study, we introduce a large-scale GPU-optimized algorithm aimed at tackling the complex intertwined effects of electromagnetism, heating, and strain acting concomitantly during the quenching process of superconducting coils. We validate our model by conducting comparisons with magnetization measurements obtained from short multifilamentary Nb3Sn wires and further experimental tests conducted on solenoid coils while subject to ramping transport currents. Furthermore, leveraging our developed numerical algorithm, we unveil the dynamic propagation mechanisms underlying thermomagnetic instabilities (including flux jumps and quenches) within the coils. Remarkably, our findings reveal that the velocity field of flux jumps and quenches within the coil is correlated with the cumulated Joule heating over a time interval rather than solely being dependent on instantaneous Joule heating power or maximum temperature. These insights have the potential to optimize the design of next-generation superconducting magnets, thereby directly influencing a wide array of technologically relevant and multidisciplinary applications.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Materials science & engineering
Author, co-author :
Xue, Cun ; School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi'an, China. xuecun@nwpu.edu.cn
Ren, Han-Xi; School of Aeronautics, Northwestern Polytechnical University, 710072, Xi'an, China
Jia, Peng; School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi'an, China
Wang, Qing-Yu; School of Aeronautics, Northwestern Polytechnical University, 710072, Xi'an, China
Liu, Wei; Western Superconducting Technologies Co., Ltd., and Xi'an Superconducting Magnet Technology Co. Ltd, 710014, Xi'an, China
Ou, Xian-Jin; Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China ; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
Sun, Liang-Ting ; Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China ; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Language :
English
Title :
Holistic numerical simulation of a quenching process on a real-size multifilamentary superconducting coil.
S. Jeong et al. Voltage spike observation in superconducting cable-in-conduit conductor under ramped magnetic fields: 1. Experiment Cryogenics 1997 37 299 304 1997Cryo..37.299J 1:CAS:528:DyaK2sXksFaitLg%3D 10.1016/S0011-2275(97)00018-0
M.D. Sumption E.W. Collings E. Gregory Low field flux jumping in high performance multifilamentary Nb3Al and Nb3Sn composite strands IEEE Trans. Appl. Supercond. 1999 9 1455 1458 1999ITAS..9.1455S 10.1109/77.784666
M.D. Sumption E.W. Collings Stability and flux jumping of internal-Sn, Nb3Sn conductors (and a model system MgB2) IEEE Trans. Appl. Supercond. 2003 13 3394 3397 2003ITAS..13.3394S 1:CAS:528:DC%2BD2cXmtVygtbs%3D 10.1109/TASC.2003.812333
D.R. Dietderich et al. Correlation between strand stability and magnet performance IEEE Trans. Appl. Supercond. 2005 15 1524 1528 2005ITAS..15.1524D 1:CAS:528:DC%2BD2MXlvFyiurY%3D 10.1109/TASC.2005.849155
Fabbricatore, P. et al. Low-field instabilities in Nb3Sn multifilamentary wires: the possible role of unreacted Nb. Supercond. Sci. Technol. 20, L34–L37 (2007).
B. Bordini L. Bottura L. Oberli L. Rossi E. Takala Impact of the residual resistivity ratio on the stability of Nb3Sn magnets IEEE Trans. Appl. Supercond. 2012 22 4705804 10.1109/TASC.2011.2180693
P. Bruzzone et al. Collective flux jumps observed during operation of the EDIPO magnets IEEE Trans. Appl. Supercond. 2014 25 4701104
J.C. Perez et al. 16 T Nb3Sn racetrack model coil test result IEEE Trans. Appl. Supercond. 2016 26 4004906 10.1109/TASC.2016.2530684
A.V. Zlobin et al. Development and first test of the 15 T Nb3Sn dipole demonstrator MDPCT1 IEEE Trans. Appl. Supercond. 2020 30 4000805 1:CAS:528:DC%2BB3cXhvVSjtbzM 10.1109/TASC.2020.2967686
L. Sun et al. Development of a 1/2-length prototype high field Nb3Sn magnet for the 4th generation ECR ion source Acta Mech. Sin. 2024 40 723376 10.1007/s10409-023-23376-x
J. Liu L. Wang L. Qin Q. Wang Y. Dai Design, fabrication, and test of a 12 T REBCO insert for a 27 T all-superconducting magnet IEEE Trans. Appl. Supercond. 2020 30 4300807 10.1109/TASC.2020.2976598
A.K. Ghosh et al. Dynamic stability threshold in high-performance internal-tin Nb3Sn superconductors for high field magnets Supercond. Sci. Technol. 2005 18 L5 L8 1:CAS:528:DC%2BD2MXot1Ogug%3D%3D 10.1088/0953-2048/18/1/L02
A.K. Ghosh L.D. Cooley A.R. Moodenbaugh Investigation of instability in high Jc Nb3Sn strands IEEE Trans. Appl. Supercond. 2005 15 3360 3363 2005ITAS..15.3360G 1:CAS:528:DC%2BD2MXmtVamsr4%3D 10.1109/TASC.2005.848904
G. Ambrosio et al. Critical current and instability threshold measurement of Nb3Sn cables for high field accelerator magnets IEEE Trans. Appl. Supercond. 2005 15 1545 1549 2005ITAS..15.1545A 1:CAS:528:DC%2BD2MXlvFyiu7w%3D 10.1109/TASC.2005.849163
E. Barzi et al. Instabilities in transport current measurements of Nb3Sn strands IEEE Trans. Appl. Supercond. 2005 15 3364 3367 2005ITAS..15.3364B 1:CAS:528:DC%2BD2MXmtVamsr8%3D 10.1109/TASC.2005.848906
L.D. Cooley More time for Nb3Sn magnet conductors Supercond. Sci. Technol. 2018 31 100501 2018SuScT.31j0501C 10.1088/1361-6668/aadd26
B. Bordini et al. Magnetization measurements of high-Jc Nb3Sn strands IEEE Trans. Appl. Supercond. 2013 23 7100806 2013ITAS..2300806B 3039046 10.1109/TASC.2013.2240754
A. Ballarino L. Bottura Targets for R&D on Nb3Sn conductor for high energy physics IEEE Trans. Appl. Supercond. 2015 25 6000906 10.1109/TASC.2015.2390149
M. Martino P. Arpaia S. Ierardi Impact of flux jumps on high-precision powering of Nb3Sn superconducting magnets J. Phys.: Conf. Ser. 2019 1350 012180 1:CAS:528:DC%2BB3cXhvFSrtL%2FO
Y.B. Kim C.F. Hempstead A.R. Strnad Magnetization and critical supercurrents Phys. Rev. 1963 129 528 1963PhRv.129.528K 1:CAS:528:DyaF3sXisVSlsw%3D%3D 10.1103/PhysRev.129.528
S.L. Wipf M.S. Lubell Flux jumping in Nb–25% Zr under nearly adiabatic conditions Phys. Lett. 1965 16 103 105 1965PhL..16.103W 1:CAS:528:DyaF2MXkt1yms7c%3D 10.1016/0031-9163(65)90137-X
S.L. Wipe Magnetic instabilities in type-II superconductors Phys. Rev. 1967 161 404 1967PhRv.161.404W 10.1103/PhysRev.161.404
P.S. Swartz C.P. Bean A model for magnetic instabilities in hard superconductors: the adiabatic critical state J. Appl. Phys. 1968 39 4991 4998 1968JAP..39.4991S 10.1063/1.1655898
S.L. Wipf Review of stability in high temperature superconductors with emphasis on flux jumping Cryogenics 1991 31 936 948 1991Cryo..31.936W 1:CAS:528:DyaK3MXmvFWqtLc%3D 10.1016/0011-2275(91)90217-K
V.V. Chabanenko et al. Magnetothermal instabilities in type II superconductors: the influence of magnetic irreversibility J. Appl. Phys. 2000 88 5875 5883 2000JAP..88.5875C 1:CAS:528:DC%2BD3cXnslOgu7c%3D 10.1063/1.1314611
R.G. Mints Flux creep and flux jumping Phys. Rev. B 1996 53 12311 1996PhRvB.5312311M 1:CAS:528:DyaK28XivFart7s%3D 10.1103/PhysRevB.53.12311
K.H. Műller C. Andrikidis Flux jumps in melt-textured Y–Ba–Cu–O Phys. Rev. B 1994 49 1294 1307 1994PhRvB.49.1294M 10.1103/PhysRevB.49.1294
Y.H. Zhou X. Yang Numerical simulations of thermomagnetic instability in high-Tc superconductors: dependence on sweep rate and ambient temperature Phys. Rev. B 2006 74 054507 2006PhRvB.74e4507Z 10.1103/PhysRevB.74.054507
A. Nabialek et al. Magnetic flux jumps in textured Bi2Si2CaCu2O8+δ Phys. Rev. B 2003 67 024518 2003PhRvB.67b4518N 10.1103/PhysRevB.67.024518
N.H. Zebouni A. Venkataram G.N. Rao C.G. Grenier J.M. Reynolds Magnetothermal effects in type II superconductors Phys. Rev. Lett. 1964 13 606 609 1964PhRvL.13.606Z 1:CAS:528:DyaF2MXht1yhsA%3D%3D 10.1103/PhysRevLett.13.606
M. Guillot et al. Magnetization jumps and critical current of single crystal Phys. Lett. A 1988 127 363 365 1988PhLA.127.363G 1:CAS:528:DyaL1cXitlSgsr4%3D 10.1016/0375-9601(88)90586-5
Jiang, L. et al. Selective triggering of magnetic flux avalanches by an edge indentation. Phys. Rev. B101, 224505 (2020).
Wilson, M. N. Superconducting Magnets 139–141 (Oxford University Press, Oxford, 1983).
M.D. Sumption E.W. Collings Modeling current-field instabilities in high performance Nb3Sn strands in moderate field IEEE Trans. Appl. Supercond. 2007 17 2714 2007ITAS..17.2714S 1:CAS:528:DC%2BD2sXpsVKks7Y%3D 10.1109/TASC.2007.899982
V.V. Kashikhin A.V. Zlobin Magnetic instabilities in Nb3Sn strands and cables IEEE Trans. Appl. Supercond. 2005 15 1621 2005ITAS..15.1621K 1:CAS:528:DC%2BD2MXlvFyhsrs%3D 10.1109/TASC.2005.849208
B. Bordini E. Barzi S. Feher L. Rossi A.V. Zlobin Self-field effects in magneto-thermal instabilities for Nb–Sn strands IEEE Trans. Appl. Supercond. 2008 18 1309 1312 2008ITAS..18.1309B 1:CAS:528:DC%2BD1cXotVakurc%3D 10.1109/TASC.2008.921899
B. Bordini B.L. Rossi Self field instability in high-Jc Nb3Sn strands with high copper residual resistivity ratio IEEE Trans. Appl. Supercond. 2009 19 2470–2476, 10.1109/TASC.2009.2019086
B. Bordini L. Bottura L. Oberli L. Rossi E. Takala Impact of the residual resistivity ratio on the stability of Nb3Sn magnets IEEE Trans. Appl. Supercond. 2012 22 4705804 4705804 10.1109/TASC.2011.2180693
L.D. Cooley P.S. Chang A.K. Ghosh Magnetization, RRR and stability of Nb3Sn strands with high sub-element number IEEE Trans. Appl. Supercond. 2007 17 2706 2709 2007ITAS..17.2706C 1:CAS:528:DC%2BD2sXpsVKks7g%3D 10.1109/TASC.2007.898167
A.K. Ghosh Effect of copper resistivity and filament size on the self-field instability of high-Jc Nb3Sn strands IEEE Trans. Appl. Supercond. 2013 23 7100407 7100407 2013ITAS..2300407G 10.1109/TASC.2012.2235119
A.K. Ghosh E. Gregory X. Peng Stability of high-JcNb3Sn wires in the adiabatic limit IEEE Trans. Appl. Supercond. 2010 21 2380 2383 2011ITAS..21.2380G 10.1109/TASC.2010.2088368
M.D. Sumption et al. Critical current density and stability of tube type Nb3Sn conductors Cryogenics 2012 52 91 99 2012Cryo..52..91S 1:CAS:528:DC%2BC38XjtVOrsrg%3D 10.1016/j.cryogenics.2011.12.001
M.D. Sumption Stability in Nb3Sn conductors; magnetic and self-field instability considerations at 4 K and 2 K AIP Conf. Proc. 2010 1219 199 207 2010AIPC.1219.199S 1:CAS:528:DC%2BC3cXksFOlur4%3D 10.1063/1.3402302
X. Xu M.D. Sumption S. Bhartiya X. Peng E.W. Collings Critical current densities and microstructures in rod-in-tube and tube type Nb3Sn strands-present status and prospects for improvement Supercond. Sci. Technol. 2013 26 075015 2013SuScT.26g5015X 10.1088/0953-2048/26/7/075015
B. Bordini et al. Magneto-thermal stability in LARP Nb3Sn TQS magnets IEEE Trans. Appl. Supercond. 2010 20 274 278 2010ITAS..20.274B 1:CAS:528:DC%2BC3cXotFOjt78%3D 10.1109/TASC.2010.2040600
E. Takala B. Bordini C. Scheuerlein L. Rossi Improving Magnetothermal stability in high-Jc Nb3Sn superconducting strands via the filament cut technique IEEE Trans. Appl. Supercond. 2012 22 4706205 4706205 2012ITAS..2206205T 10.1109/TASC.2012.2220134
S. Rahimzadeh-Kalaleh G. Ambrosio G. Chlachidze et al. Analysis of voltage spikes in superconducting Nb3Sn magnets IEEE Trans. Appl. Supercond. 2009 19 2442 2445 2009ITAS..19.2442R 1:CAS:528:DC%2BD1MXhtVGrtbrM 10.1109/TASC.2009.2017876
H. Bajas et al. Quench analysis of high-current-density Nb3Sn conductors in racetrack coil configuration IEEE Trans. Appl. Supercond. 2015 25 4004005 10.1109/TASC.2015.2390297
X. Xu M.D. Sumption E.W. Collings Influence of heat treatment temperature and Ti doping on low-field flux jumping and stability in (Nb–Ta)3Sn strands Supercond. Sci. Technol. 2014 27 095009 2014SuScT.27i5009X 1:CAS:528:DC%2BC2cXhs1ylsbzP 10.1088/0953-2048/27/9/095009
X. Xu P. Li A.V. Zlobin X. Peng Improvement of stability of Nb3Sn superconductors by introducing high specific heat substances Supercond. Sci. Technol. 2018 31 03LT02 10.1088/1361-6668/aaa5de
Z. Wang et al. Improving superconducting properties of 100 m class MgB2 wire with 18 + 1 filaments produced via internal Mg diffusion process Supercond. Sci. Technol. 2024 37 085017 1:CAS:528:DC%2BB2cXisVarur%2FL 10.1088/1361-6668/ad570c
J. Kováš J. Šouc P. Kováč I. Hušek Magnetization AC losses in MgB2 wires made by IMD process Supercond. Sci. Technol. 2014 28 015013 2015SuScT.28a5013K
F. Wan M.D. Sumption M.A. Rindfleisch M.J. Tomsic E.W. Collings Architecture and transport properties of multifilamentary MgB2 strands for MRI and low ac loss applications IEEE Trans. Appl. Supercond. 2016 27 1 5 10.1109/TASC.2016.2594847
H.J. Kwon et al. Critical current densities and n-values of MgB2 conductors for SMES, MRI, and low AC loss applications IEEE Trans. Appl. Supercond. 2023 33 1 4
C.P. Bean Magnetization of hard superconductors Phys. Rev. Lett. 1962 8 250 253 1962PhRvL..8.250B 10.1103/PhysRevLett.8.250
Y.B. Kim C.F. Hempstead A.R. Strand Critical persistent currents in hard superconductors Phys. Rev. Lett. 1962 9 306 309 1962PhRvL..9.306K 1:CAS:528:DyaF3sXnsl0%3D 10.1103/PhysRevLett.9.306
P.W. Anderson Theory of flux creep in hard superconductors Phys. Rev. Lett. 1962 9 309 311 1962PhRvL..9.309A 10.1103/PhysRevLett.9.309
M.V. Feigelman V.B. Geshkenbein A.I. Larkin V.M. Vinokur Theory of collective flux creep Phys. Rev. Lett. 1989 63 2303 2306 1989PhRvL.63.2303F 1:STN:280:DC%2BC2sfos1aktg%3D%3D 10040852 10.1103/PhysRevLett.63.2303
J. Bardeen M.J. Stephen Theory of the motion of vortices in superconductors Phys. Rev. 1965 140 A1197 A1207 1965PhRv.140.1197B 10.1103/PhysRev.140.A1197
E.J. Kramer Scaling laws for flux pinning in hard superconductors J. Appl. Phys. 1973 44 1360 1370 1973JAP..44.1360K 1:CAS:528:DyaE3sXhtFKksrk%3D 10.1063/1.1662353