Quantitative proteome analysis of LAP1-deficient human fibroblasts: A pilot approach for predicting the signaling pathways deregulated in LAP1-associated diseases.
Bioinformatics; DNA repair; Mass spectrometry; Oxidative stress response; Protein synthesis; Proteomics; Proteostasis; Biophysics; Biochemistry; Cell Biology
Abstract :
[en] Lamina-associated polypeptide 1 (LAP1), a ubiquitously expressed nuclear envelope protein, appears to be essential for the maintenance of cell homeostasis. Although rare, mutations in the human LAP1-encoding TOR1AIP1 gene cause severe diseases and can culminate in the premature death of affected individuals. Despite there is increasing evidence of the pathogenicity of TOR1AIP1 mutations, the current knowledge on LAP1's physiological roles in humans is limited; hence, investigation is required to elucidate the critical functions of this protein, which can be achieved by uncovering the molecular consequences of LAP1 depletion, a topic that remains largely unexplored. In this work, the proteome of patient-derived LAP1-deficient fibroblasts carrying a pathological TOR1AIP1 mutation (LAP1 E482A) was quantitatively analyzed to identify global changes in protein abundance levels relatively to control fibroblasts. An in silico functional enrichment analysis of the mass spectrometry-identified differentially expressed proteins was also performed, along with additional in vitro functional assays, to unveil the biological processes that are potentially dysfunctional in LAP1 E482A fibroblasts. Collectively, our findings suggest that LAP1 deficiency may induce significant alterations in various cellular activities, including DNA repair, messenger RNA degradation/translation, proteostasis and glutathione metabolism/antioxidant response. This study sheds light on possible new functions of human LAP1 and could set the basis for subsequent in-depth mechanistic investigations. Moreover, by identifying deregulated signaling pathways in LAP1-deficient cells, our work may offer valuable molecular targets for future disease-modifying therapies for TOR1AIP1-associated nuclear envelopathies.
Disciplines :
Pediatrics
Author, co-author :
Pereira, Cátia D; Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
Espadas, Guadalupe; Center for Genomics Regulation, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain ; Universitat Pompeu Fabra, Barcelona, Spain
Martins, Filipa; Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
Bertrand, Anne T; Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
Servais, Laurent ; Université de Liège - ULiège > Département des sciences cliniques ; MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford and NIHR Oxford Biomedical Research Center, Oxford, OX3 9DU, United Kingdom
Sabidó, Eduard; Center for Genomics Regulation, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain ; Universitat Pompeu Fabra, Barcelona, Spain
Chevalier, Philippe ; Université de Liège - ULiège > Département des sciences cliniques ; Université Claude Bernard Lyon 1, Lyon, France ; Hospices Civils de Lyon, Lyon, France
da Cruz E Silva, Odete A B; Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
Rebelo, Sandra ; Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
Language :
English
Title :
Quantitative proteome analysis of LAP1-deficient human fibroblasts: A pilot approach for predicting the signaling pathways deregulated in LAP1-associated diseases.
This work was financed by the Institute of Biomedicine (iBiMED)\u2014UIDP/04501/2020 and UIDB/04501/2020\u2014and the Funda\u00E7\u00E3o para a Ci\u00EAncia e a Tecnologia (FCT) of the Minist\u00E9rio da Ci\u00EAncia, Tecnologia e Ensino Superior, the COMPETE 2020 Program, the QREN and the European Union (Fundo Europeu de Desenvolvimento Regional). Authors acknowledge support from EPIC-XS, project number 823839, funded by the Horizon 2020 Program of the European Union. The proteomics analyses were performed in the Proteomics Unit from the Centre de Regulaci\u00F3 Gen\u00F2mica (CRG) and Universitat Pompeu Fabra (UPF). The CRG/UPF Proteomics Unit is part of the Spanish National Infrastructure for Omics Sciences (ICTS OmicsTech). Image acquisition was performed in the LiM facility of iBiMED, a node of Portuguese Platform of BioImaging (PPBI)\u2014POCI-01-0145-FEDER-02212. C.D.P. is the recipient of a PhD fellowship\u2014SFRH/BD/140310/2018 and COVID/BD/152982/2023\u2014co-funded by FCT of the Minist\u00E9rio da Ci\u00EAncia, Tecnologia e Ensino Superior, the Centro 2020 Program and the European Union (Fundo Social Europeu).In this work, the experimental and bioinformatics results revealed alterations in the redox status and functioning of antioxidant defense systems in LAP1 E482A fibroblasts. We detected significantly elevated Nrf2 protein levels in LAP1 E482A versus control fibroblasts without prior exposure to stressful agents (Fig. 6d). A higher sensitivity to treatment with exogenous H2O2 (100 \u03BCM) was also observed in LAP1 E482A fibroblasts, as shown by a substantial Nrf2 accumulation in these cells that contrasts with the slight increase in Nrf2 protein levels in control fibroblasts (Fig. 6d). It is known that constitutively expressed Nrf2 is constantly degraded and maintains a low basal protein level in a physiological context; however, in response to oxidative/electrophilic stress, de novo synthesized Nrf2 is stabilized to activate the transcription of genes encoding cytoprotective antioxidant and detoxifying enzymes, such as nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) quinone oxidoreductase 1 (NQO1) [103]. This ROS-inducible enzyme is involved in the cellular defense against oxidative stress, for example by reducing ubiquinone, a constituent of the mitochondrial electron transport chain, to its antioxidant form [104] as well as scavenging ROS [105]. Interestingly, NQO1 is one of the upregulated proteins identified by LC\u2013MS/MS in LAP1 E482A fibroblasts (Fig. 2a; Supplementary Table S1), which is consistent with Nrf2 induction in a basal state (Fig. 6d). These data could indicate that the amount of ROS normally present in these cells may exceed a physiological level and cause oxidative stress, leading to hyperactivation of endogenous antioxidant mechanisms, like the Nrf2-mediated stress response, to shift the redox equilibrium back to a more reducing state. Our proteomics analysis also evidenced a deregulation of proteins implicated in glutathione metabolism, namely \u03B3-glutamyl transferase 5 (GGT5) and glutathione synthetase (GS), in LAP1 E482A fibroblasts (Fig. 4c; Supplementary Table S8). Glutathione is a potent antioxidant agent abundant in the cytosol, where it exists mostly in a reduced form (i.e. GSH) under homeostatic redox conditions; when this balance is perturbed by oxidants, glutathione is temporarily converted to an oxidized form (e.g. GSSG) while carrying out antioxidant functions that include, for instance, protecting thiol groups in proteins from permanent oxidation, neutralizing ROS and detoxifying xenobiotics [106]. The fact that GS, the enzyme that catalyzes the second and final step in glutathione synthesis [107], is upregulated in LAP1 E482A fibroblasts (Fig. 2a; Supplementary Table S1) points to a stimulation of glutathione production. In addition to de novo biosynthesis, another means to maintain an elevated intracellular concentration of glutathione is by enhancing the uptake of exogenous one, which can be promoted by GGT5 [108]. Its hydrolytic action initiates the extracellular degradation of glutathione S-conjugates, GSH and GSSG [109], releasing intermediates that are further metabolized so that precursor amino acids can be taken up by cells and reincorporated into glutathione [108]. So, the upregulation of GS and GGT5 in LAP1 E482A fibroblasts (Fig. 2a; Supplementary Table S1) may reflect an adaptive response to amplify the cells\u2019 capacity to replenish the glutathione pool in the intracellular milieu and maximize the redox potential when facing oxidative challenges, namely by supporting a higher activity of glutathione-dependent protective enzymes, as is the case of glutathione S-transferase \u03BC4 (GSTM4), another protein upregulated in these cells (Fig. 2a; Supplementary Table S1).This work was financed by the Institute of Biomedicine (iBiMED)\u2014UIDP/04501/2020 and UIDB/04501/2020\u2014and the Funda\u00E7\u00E3o para a Ci\u00EAncia e a Tecnologia (FCT) of the Minist\u00E9rio da Ci\u00EAncia, Tecnologia e Ensino Superior, the COMPETE 2020 Program, the QREN and the European Union (Fundo Europeu de Desenvolvimento Regional). Authors acknowledge support from EPIC-XS, project number 823839, funded by the Horizon 2020 Program of the European Union. The proteomics analyses were performed in the Proteomics Unit from the Centre de Regulaci\u00F3 Gen\u00F2mica (CRG) and Universitat Pompeu Fabra (UPF). The CRG/UPF Proteomics Unit is part of the Spanish National Infrastructure for Omics Sciences (ICTS OmicsTech). Image acquisition was performed in the LiM facility of iBiMED, a node of Portuguese Platform of BioImaging (PPBI)\u2013POCI-01-0145-FEDER-02212. C.D.P. is the recipient of a PhD fellowship\u2014SFRH/BD/140310/2018 and COVID/BD/152982/2023\u2014co-funded by FCT of the Minist\u00E9rio da Ci\u00EAncia, Tecnologia e Ensino Superior, the Centro 2020 Program and the European Union (Fundo Social Europeu).
Senior, A., Gerace, L., Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina. J. Cell Biol. 107 (1988), 2029–2036, 10.1083/jcb.107.6.2029.
Martin, L., Crimaudo, C., Gerace, L., cDNA cloning and characterization of lamina-associated polypeptide 1C (LAP1C), an integral protein of the inner nuclear membrane. J. Biol. Chem. 270 (1995), 8822–8828, 10.1074/jbc.270.15.8822.
Kondo, Y., Kondoh, J., Hayashi, D., Ban, T., Takagi, M., Kamei, Y., Tsuji, L., Kim, J., Yoneda, Y., Molecular cloning of one isotype of human lamina-associated polypeptide 1s and a topological analysis using its deletion mutants. Biochem. Biophys. Res. Commun. 294 (2002), 770–778, 10.1016/S0006-291X(02)00563-6.
Santos, M., Domingues, S.C., Costa, P., Muller, T., Galozzi, S., Marcus, K., da Cruz e Silva, E.F., da Cruz e Silva, O.A., Rebelo, S., Identification of a novel human LAP1 isoform that is regulated by protein phosphorylation. PLoS One, 9, 2014, e113732, 10.1371/journal.pone.0113732.
Neumann, B., Walter, T., Hériché, J.K., Bulkescher, J., Erfle, H., Conrad, C., Rogers, P., Poser, I., Held, M., Liebel, U., Cetin, C., Sieckmann, F., Pau, G., Kabbe, R., Wünsche, A., Satagopam, V., Schmitz, M.H.A., Chapuis, C., Gerlich, D.W., Schneider, R., Eils, R., Huber, W., Peters, J.M., Hyman, A.A., Durbin, R., Pepperkok, R., Ellenberg, J., Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464 (2010), 721–727, 10.1038/nature08869.
Santos, M., Costa, P., Martins, F., da Cruz e Silva, E.F., da Cruz e Silva, O.A., Rebelo, S., LAP1 is a crucial protein for the maintenance of the nuclear envelope structure and cell cycle progression. Mol. Cell. Biochem. 399 (2015), 143–153, 10.1007/s11010-014-2241-x.
Pereira, C.D., Martins, F., Santos, M., Müeller, T., da Cruz e Silva, O.A.B., Rebelo, S., Nuclear accumulation of LAP1:TRF2 complex during DNA damage response uncovers a novel role for LAP1. Cells, 9, 2020, 1804, 10.3390/cells9081804.
Saunders, C.A., Harris, N.J., Willey, P.T., Woolums, B.M., Wang, Y., McQuown, A.J., Schoenhofen, A., Worman, H.J., Dauer, W.T., Gundersen, G.G., Luxton, G.W.G., TorsinA controls TAN line assembly and the retrograde flow of dorsal perinuclear actin cables during rearward nuclear movement. J. Cell Biol. 216 (2017), 657–674, 10.1083/jcb.201507113.
Serrano, J.B., Martins, F., Sousa, J.C., Pereira, C.D., van Pelt, A.M.M., Rebelo, S., da Cruz e Silva, O.A.B., Descriptive analysis of LAP1 distribution and that of associated proteins throughout spermatogenesis. Membranes, 7, 2017, 22, 10.3390/membranes7020022.
Kayman Kürekçi, G., Acar, A.C., Dinçer, P.R., Loss of the nuclear envelope protein LAP1B disrupts the myogenic differentiation of patient-derived fibroblasts. Int. J. Mol. Sci., 23, 2022, 13615, 10.3390/ijms232113615.
Shin, J.Y., Méndez-López, I., Wang, Y., Hays, A.P., Tanji, K., Lefkowitch, J.H., Schulze, P.C., Worman, H.J., Dauer, W.T., Lamina-associated polypeptide-1 interacts with the muscular dystrophy protein emerin and is essential for skeletal muscle maintenance. Dev. Cell 26 (2013), 591–603, 10.1016/j.devcel.2013.08.012.
Shin, J.Y., Méndez-López, I., Hong, M., Wang, Y., Tanji, K., Wu, W., Shugol, L., Krauss, R.S., Dauer, W.T., Worman, H.J., Lamina-associated polypeptide 1 is dispensable for embryonic myogenesis but required for postnatal skeletal muscle growth. Hum. Mol. Genet. 26 (2017), 65–78, 10.1093/hmg/ddw368.
Cossins, J., Webster, R., Maxwell, S., Rodríguez Cruz, P.M., Knight, R., Llewelyn, J.G., Shin, J.Y., Palace, J., Beeson, D., Congenital myasthenic syndrome due to a TOR1AIP1 mutation: a new disease pathway for impaired synaptic transmission. Brain. Commun., 2, 2020, fcaa174, 10.1093/braincomms/fcaa174.
Shin, J.Y., Le Dour, C., Sera, F., Iwata, S., Homma, S., Joseph, L.C., Morrow, J.P., Dauer, W.T., Worman, H.J., Depletion of lamina-associated polypeptide 1 from cardiomyocytes causes cardiac dysfunction in mice. Nucleus 5 (2014), 260–268, 10.4161/nucl.29227.
Kayman-Kurekci, G., Talim, B., Korkusuz, P., Sayar, N., Sarioglu, T., Oncel, I., Sharafi, P., Gundesli, H., Balci-Hayta, B., Purali, N., Serdaroglu-Oflazer, P., Topaloglu, H., Dincer, P., Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies. Neuromuscul. Disord. 24 (2014), 624–633, 10.1016/j.nmd.2014.04.007.
Dorboz, I., Coutelier, M., Bertrand, A.T., Caberg, J.H., Elmaleh-Bergès, M., Lainé, J., Stevanin, G., Bonne, G., Boespflug-Tanguy, O., Servais, L., Severe dystonia, cerebellar atrophy, and cardiomyopathy likely caused by a missense mutation in TOR1AIP1. Orphanet J. Rare Dis., 9, 2014, 174, 10.1186/s13023-014-0174-9.
Ghaoui, R., Benavides, T., Lek, M., Waddell, L.B., Kaur, S., North, K.N., MacArthur, D.G., Clarke, N.F., Cooper, S.T., TOR1AIP1 as a cause of cardiac failure and recessive limb-girdle muscular dystrophy. Neuromuscul. Disord. 26 (2016), 500–503, 10.1016/j.nmd.2016.05.013.
Bhatia, A., Mobley, B.C., Cogan, J., Koziura, M.E., Brokamp, E., Phillips, J., Newman, J., Moore, S.A., Hamid, R., Udn, U.D.N., Network, M.o.t.U.D., Magnetic resonance imaging characteristics in case of TOR1AIP1 muscular dystrophy. Clin. Imag. 58 (2019), 108–113, 10.1016/j.clinimag.2019.06.010.
Feng, X., Wu, J., Xian, W., Liao, B., Liao, S., Yao, X., Zhang, W., Muscular involvement and tendon contracture in limb-girdle muscular dystrophy 2Y: a mild adult phenotype and literature review. BMC Muscoskel. Disord., 21, 2020, 588, 10.1186/s12891-020-03616-4.
Lornage, X., Mallaret, M., Silva-Rojas, R., Biancalana, V., Giovannini, D., Dieterich, K., Saker, S., Deleuze, J.F., Wuyam, B., Laporte, J., Böhm, J., Selective loss of a LAP1 isoform causes a muscle-specific nuclear envelopathy. Neurogenetics 22 (2021), 33–41, 10.1007/s10048-020-00632-3.
Malfatti, E., Catchpool, T., Nouioua, S., Sihem, H., Fournier, E., Carlier, R.Y., Cardone, N., Davis, M.R., Laing, N.G., Sternberg, D., Ravenscroft, G., A TOR1AIP1 variant segregating with an early onset limb girdle myasthenia-Support for the role of LAP1 in NMJ function and disease. Neuropathol. Appl. Neurobiol., 48, 2022, e12743, 10.1111/nan.12743.
Fichtman, B., Zagairy, F., Biran, N., Barsheshet, Y., Chervinsky, E., Ben Neriah, Z., Shaag, A., Assa, M., Elpeleg, O., Harel, A., Spiegel, R., Combined loss of LAP1B and LAP1C results in an early onset multisystemic nuclear envelopathy. Nat. Commun., 10, 2019, 605, 10.1038/s41467-019-08493-7.
Lessel, I., Chen, M.J., Lüttgen, S., Arndt, F., Fuchs, S., Meien, S., Thiele, H., Jones, J.R., Shaw, B.R., Crossman, D.K., Nürnberg, P., Korf, B.R., Kubisch, C., Lessel, D., Two novel cases further expand the phenotype of TOR1AIP1-associated nuclear envelopathies. Hum Genet 139 (2020), 483–498, 10.1007/s00439-019-02105-6.
Kim, C.E., Perez, A., Perkins, G., Ellisman, M.H., Dauer, W.T., A molecular mechanism underlying the neural-specific defect in torsinA mutant mice. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 9861–9866, 10.1073/pnas.0912877107.
Kaur, G., Suri, G.S., Shinde, D., Investigating Torsin‐1A‐interacting protein 1 as a predictive and immunological biomarker in cancer. Lab. Med. 1 (2023), 171–180, 10.1002/ila2.25.
Zhao, C., Brown, R.S., Chase, A.R., Eisele, M.R., Schlieker, C., Regulation of torsin ATPases by LAP1 and LULL1. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), E1545–E1554, 10.1073/pnas.1300676110.
Brown, R.S., Zhao, C., Chase, A.R., Wang, J., Schlieker, C., The mechanism of torsin ATPase activation. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), E4822–E4831, 10.1073/pnas.1415271111.
Demircioglu, F.E., Sosa, B.A., Ingram, J., Ploegh, H.L., Schwartz, T.U., Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia. Elife, 5, 2016, e17983, 10.7554/eLife.17983.
Luithle, N., de Bos, J.U., Hovius, R., Maslennikova, D., Lewis, R.T., Ungricht, R., Fierz, B., Kutay, U., Torsin ATPases influence chromatin interaction of the Torsin regulator LAP1. Elife, 9, 2020, e63614, 10.7554/eLife.63614.
Goodchild, R.E., Dauer, W.T., The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J. Cell Biol. 168 (2005), 855–862, 10.1083/jcb.200411026.
Santos, M., Rebelo, S., Van Kleeff, P.J., Kim, C.E., Dauer, W.T., Fardilha, M., da Cruz e Silva, O.A., da Cruz e Silva, E.F., The nuclear envelope protein, LAP1B, is a novel protein phosphatase 1 substrate. PLoS One, 8, 2013, e76788, 10.1371/journal.pone.0076788.
Chiva, C., Olivella, R., Borràs, E., Espadas, G., Pastor, O., Solé, A., Sabidó, E., QCloud: a cloud-based quality control system for mass spectrometry-based proteomics laboratories. PLoS One, 13, 2018, e0189209, 10.1371/journal.pone.0189209.
Perkins, D.N., Pappin, D.J., Creasy, D.M., Cottrell, J.S., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20 (1999), 3551–3567, 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO.
Beer, L.A., Liu, P., Ky, B., Barnhart, K.T., Speicher, D.W., Efficient quantitative comparisons of plasma proteomes using label-free analysis with MaxQuant. Methods Mol. Biol. 1619 (2017), 339–352, 10.1007/978-1-4939-7057-5_23.
Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, D.J., Prakash, A., Frericks-Zipper, A., Eisenacher, M., Walzer, M., Wang, S., Brazma, A., Vizcaíno, J.A., The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50 (2022), D543–D552, 10.1093/nar/gkab1038.
Thomas, P.D., Ebert, D., Muruganujan, A., Mushayahama, T., Albou, L.P., Mi, H., PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 31 (2022), 8–22, 10.1002/pro.4218.
Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N.T., Legeay, M., Fang, T., Bork, P., Jensen, L.J., von Mering, C., The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49 (2021), D605–D612, 10.1093/nar/gkaa1074.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 (2003), 2498–2504, 10.1101/gr.1239303.
Mao, Z., Seluanov, A., Jiang, Y., Gorbunova, V., TRF2 is required for repair of nontelomeric DNA double-strand breaks by homologous recombination. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 13068–13073, 10.1073/pnas.0702410104.
Kong, X., Cruz, G.M.S., Trinh, S.L., Zhu, X.D., Berns, M.W., Yokomori, K., Biphasic recruitment of TRF2 to DNA damage sites promotes non-sister chromatid homologous recombination repair. J. Cell Sci., 131, 2018, jcs219311, 10.1242/jcs.219311.
Huda, N., Tanaka, H., Mendonca, M.S., Gilley, D., DNA damage-induced phosphorylation of TRF2 is required for the fast pathway of DNA double-strand break repair. Mol. Cell Biol. 29 (2009), 3597–3604, 10.1128/MCB.00944-08.
Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., Hurov, K.E., Luo, J., Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S.P., Elledge, S.J., ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316 (2007), 1160–1166, 10.1126/science.1140321.
Tanaka, H., Mendonca, M.S., Bradshaw, P.S., Hoelz, D.J., Malkas, L.H., Meyn, M.S., Gilley, D., DNA damage-induced phosphorylation of the human telomere-associated protein TRF2. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 15539–15544, 10.1073/pnas.0507915102.
Krokan, H.E., Bjørås, M., Base excision repair. Cold Spring Harbor Perspect. Biol., 5, 2013, a012583, 10.1101/cshperspect.a012583.
Caldecott, K.W., XRCC1 protein; form and function. DNA Repair, 81, 2019, 102664, 10.1016/j.dnarep.2019.102664.
Marsin, S., Vidal, A.E., Sossou, M., Ménissier-de Murcia, J., Le Page, F., Boiteux, S., de Murcia, G., Radicella, J.P., Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG 1. J. Biol. Chem. 278 (2003), 44068–44074, 10.1074/jbc.M306160200.
Lan, L., Nakajima, S., Oohata, Y., Takao, M., Okano, S., Masutani, M., Wilson, S.H., Yasui, A., In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 13738–13743, 10.1073/pnas.0406048101.
Hoch, N.C., Hanzlikova, H., Rulten, S.L., Tétreault, M., Komulainen, E., Ju, L., Hornyak, P., Zeng, Z., Gittens, W., Rey, S.A., Staras, K., Mancini, G.M.S., McKinnon, P.J., Wang, Z.Q., Wagner, J.D., Consortium, C.R.C., Yoon, G., Caldecott, K.W., XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541 (2017), 87–91, 10.1038/nature20790.
Cobley, J.N., Fiorello, M.L., Bailey, D.M., 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 15 (2018), 490–503, 10.1016/j.redox.2018.01.008.
Mahaney, B.L., Hammel, M., Meek, K., Tainer, J.A., Lees-Miller, S.P., XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair. Biochem. Cell. Biol. 91 (2013), 31–41, 10.1139/bcb-2012-0058.
Grawunder, U., Wilm, M., Wu, X., Kulesza, P., Wilson, T.E., Mann, M., Lieber, M.R., Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388 (1997), 492–495, 10.1038/41358.
Bryans, M., Valenzano, M.C., Stamato, T.D., Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat. Res. 433 (1999), 53–58, 10.1016/s0921-8777(98)00063-9.
Ghosh, D., Raghavan, S.C., Nonhomologous end joining: new accessory factors fine tune the machinery. Trends Genet. 37 (2021), 582–599, 10.1016/j.tig.2021.03.001.
Murray, J.E., van der Burg, M., Ijspeert, H., Carroll, P., Wu, Q., Ochi, T., Leitch, A., Miller, E.S., Kysela, B., Jawad, A., Bottani, A., Brancati, F., Cappa, M., Cormier-Daire, V., Deshpande, C., Faqeih, E.A., Graham, G.E., Ranza, E., Blundell, T.L., Jackson, A.P., Stewart, G.S., Bicknell, L.S., Mutations in the NHEJ component XRCC4 cause primordial dwarfism. Am. J. Hum. Genet. 96 (2015), 412–424, 10.1016/j.ajhg.2015.01.013.
de Bruin, C., Mericq, V., Andrew, S.F., van Duyvenvoorde, H.A., Verkaik, N.S., Losekoot, M., Porollo, A., Garcia, H., Kuang, Y., Hanson, D., Clayton, P., van Gent, D.C., Wit, J.M., Hwa, V., Dauber, A., An XRCC4 splice mutation associated with severe short stature, gonadal failure, and early-onset metabolic syndrome. J. Clin. Endocrinol. Metab. 100 (2015), E789–E798, 10.1210/jc.2015-1098.
Łabno, A., Tomecki, R., Dziembowski, A., Cytoplasmic RNA decay pathways - enzymes and mechanisms. Biochim. Biophys. Acta 1863 (2016), 3125–3147, 10.1016/j.bbamcr.2016.09.023.
Gao, M., Fritz, D.T., Ford, L.P., Wilusz, J., Interaction between a poly(A)-specific ribonuclease and the 5' cap influences mRNA deadenylation rates in vitro. Mol. Cell. 5 (2000), 479–488, 10.1016/s1097-2765(00)80442-6.
Martînez, J., Ren, Y.G., Nilsson, P., Ehrenberg, M., Virtanen, A., The mRNA cap structure stimulates rate of poly(A) removal and amplifies processivity of degradation. J. Biol. Chem. 276 (2001), 27923–27929, 10.1074/jbc.M102270200.
Lau, N.C., Kolkman, A., van Schaik, F.M.A., Mulder, K.W., Pijnappel, W.W.M.P., Heck, A.J.R., Timmers, H.T.M., Human Ccr4-Not complexes contain variable deadenylase subunits. Biochem. J. 422 (2009), 443–453, 10.1042/BJ20090500.
Mostafa, D., Takahashi, A., Yanagiya, A., Yamaguchi, T., Abe, T., Kureha, T., Kuba, K., Kanegae, Y., Furuta, Y., Yamamoto, T., Suzuki, T., Essential functions of the CNOT7/8 catalytic subunits of the CCR4-NOT complex in mRNA regulation and cell viability. RNA Biol. 17 (2020), 403–416, 10.1080/15476286.2019.1709747.
Keskeny, C., Raisch, T., Sgromo, A., Igreja, C., Bhandari, D., Weichenrieder, O., Izaurralde, E., A conserved CAF40-binding motif in metazoan NOT4 mediates association with the CCR4-NOT complex. Genes Dev. 33 (2019), 236–252, 10.1101/gad.320952.118.
Seal, R., Temperley, R., Wilusz, J., Lightowlers, R.N., Chrzanowska-Lightowlers, Z.M.A., Serum-deprivation stimulates cap-binding by PARN at the expense of eIF4E, consistent with the observed decrease in mRNA stability. Nucleic Acids Res. 33 (2005), 376–387, 10.1093/nar/gki169.
Preissler, S., Reuther, J., Koch, M., Scior, A., Bruderek, M., Frickey, T., Deuerling, E., Not4-dependent translational repression is important for cellular protein homeostasis in yeast. EMBO J. 34 (2015), 1905–1924, 10.15252/embj.201490194.
Panasenko, O.O., Collart, M.A., Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Mol. Cell Biol. 31 (2011), 1610–1623, 10.1128/MCB.01210-10.
Halter, D., Collart, M.A., Panasenko, O.O., The Not4 E3 ligase and CCR4 deadenylase play distinct roles in protein quality control. PLoS One, 9, 2014, e86218, 10.1371/journal.pone.0086218.
Dimitrova, L.N., Kuroha, K., Tatematsu, T., Inada, T., Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284 (2009), 10343–10352, 10.1074/jbc.M808840200.
Panasenko, O., Landrieux, E., Feuermann, M., Finka, A., Paquet, N., Collart, M.A., The yeast Ccr4-Not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex. J. Biol. Chem. 281 (2006), 31389–31398, 10.1074/jbc.M604986200.
Panasenko, O.O., David, F.P.A., Collart, M.A., Ribosome association and stability of the nascent polypeptide-associated complex is dependent upon its own ubiquitination. Genetics 181 (2009), 447–460, 10.1534/genetics.108.095422.
Kirstein-Miles, J., Scior, A., Deuerling, E., Morimoto, R.I., The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J. 32 (2013), 1451–1468, 10.1038/emboj.2013.87.
Bakthisaran, R., Tangirala, R., Rao, C.M., Small heat shock proteins: role in cellular functions and pathology. Biochim. Biophys. Acta 1854 (2015), 291–319, 10.1016/j.bbapap.2014.12.019.
Jakob, U., Gaestel, M., Engel, K., Buchner, J., Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268 (1993), 1517–1520.
Rajaraman, K., Raman, B., Ramakrishna, T., Rao, C.M., Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation. FEBS Lett. 497 (2001), 118–123, 10.1016/s0014-5793(01)02451-6.
Bukach, O.V., Seit-Nebi, A.S., Marston, S.B., Gusev, N.B., Some properties of human small heat shock protein Hsp 20 (HspB6). Eur. J. Biochem. 271 (2004), 291–302, 10.1046/j.1432-1033.2003.03928.x.
Wilhelmus, M.M.M., Boelens, W.C., Otte-Höller, I., Kamps, B., de Waal, R.M.W., Verbeek, M.M., Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res. 1089 (2006), 67–78, 10.1016/j.brainres.2006.03.058.
Bruinsma, I.B., Bruggink, K.A., Kinast, K., Versleijen, A.A.M., Segers-Nolten, I.M.J., Subramaniam, V., Kuiperij, H.B., Boelens, W., de Waal, R.M.W., Verbeek, M.M., Inhibition of α-synuclein aggregation by small heat shock proteins. Proteins 79 (2011), 2956–2967, 10.1002/prot.23152.
Ahmad, M.F., Singh, D., Taiyab, A., Ramakrishna, T., Raman, B., Rao, C.M., Selective Cu2+ binding, redox silencing, and cytoprotective effects of the small heat shock proteins alphaA- and alphaB-crystallin. J. Mol. Biol. 382 (2008), 812–824, 10.1016/j.jmb.2008.07.068.
Prabhu, S., Srinivas, V., Ramakrishna, T., Raman, B., Rao, C.M., Inhibition of Cu2+-mediated generation of reactive oxygen species by the small heat shock protein αB-crystallin: the relative contributions of the N- and C-terminal domains. Free Radic. Biol. Med. 51 (2011), 755–762, 10.1016/j.freeradbiomed.2011.05.021.
Chis, R., Sharma, P., Bousette, N., Miyake, T., Wilson, A., Backx, P.H., Gramolini, A.O., α-Crystallin B prevents apoptosis after H2O2 exposure in mouse neonatal cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 303 (2012), H967–H978, 10.1152/ajpheart.00040.2012.
Wang, X., Zhao, T., Huang, W., Wang, T., Qian, J., Xu, M., Kranias, E.G., Wang, Y., Fan, G.C., Hsp 20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cell. 27 (2009), 3021–3031, 10.1002/stem.230.
Korovila, I., Hugo, M., Castro, J.P., Weber, D., Höhn, A., Grune, T., Jung, T., Proteostasis, oxidative stress and aging. Redox Biol. 13 (2017), 550–567, 10.1016/j.redox.2017.07.008.
Hoter, A., El-Sabban, M.E., Naim, H.Y., The HSP90 family: structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci., 19, 2018, 2560, 10.3390/ijms19092560.
Uma, S., Hartson, S.D., Chen, J.J., Matts, R.L., Hsp90 is obligatory for the heme-regulated eIF-2 alpha kinase to acquire and maintain an activable conformation. J. Biol. Chem. 272 (1997), 11648–11656, 10.1074/jbc.272.17.11648.
Yonehara, M., Minami, Y., Kawata, Y., Nagai, J., Yahara, I., Heat-induced chaperone activity of HSP90. J. Biol. Chem. 271 (1996), 2641–2645, 10.1074/jbc.271.5.2641.
Weis, F., Moullintraffort, L., Heichette, C., Chrétien, D., Garnier, C., The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation. J. Biol. Chem. 285 (2010), 9525–9534, 10.1074/jbc.M109.096586.
Hageman, J., van Waarde, M.A.W.H., Zylicz, A., Walerych, D., Kampinga, H.H., The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem. J. 435 (2011), 127–142, 10.1042/BJ20101247.
Murata, S., Minami, Y., Minami, M., Chiba, T., Tanaka, K., CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2 (2001), 1133–1138, 10.1093/embo-reports/kve246.
Ballinger, C.A., Connell, P., Wu, Y., Hu, Z., Thompson, L.J., Yin, L.Y., Patterson, C., Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell Biol. 19 (1999), 4535–4545, 10.1128/MCB.19.6.4535.
Wade, B.E., Wang, C.E., Yan, S., Bhat, K., Huang, B., Li, S., Li, X.J., Ubiquitin-activating enzyme activity contributes to differential accumulation of mutant huntingtin in brain and peripheral tissues. J. Neurosci. 34 (2014), 8411–8422, 10.1523/JNEUROSCI.0775-14.2014.
Haas, A.L., Rose, I.A., The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J. Biol. Chem. 257 (1982), 10329–10337.
Hershko, A., Heller, H., Elias, S., Ciechanover, A., Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258 (1983), 8206–8214.
Klaips, C.L., Jayaraj, G.G., Hartl, F.U., Pathways of cellular proteostasis in aging and disease. J. Cell Biol. 217 (2018), 51–63, 10.1083/jcb.201709072.
Ramser, J., Ahearn, M.E., Lenski, C., Yariz, K.O., Hellebrand, H., von Rhein, M., Clark, R.D., Schmutzler, R.K., Lichtner, P., Hoffman, E.P., Meindl, A., Baumbach-Reardon, L., Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am. J. Hum. Genet. 82 (2008), 188–193, 10.1016/j.ajhg.2007.09.009.
Fichna, J.P., Potulska-Chromik, A., Miszta, P., Redowicz, M.J., Kaminska, A.M., Zekanowski, C., Filipek, S., A novel dominant D109A CRYAB mutation in a family with myofibrillar myopathy affects αB-crystallin structure. BBA Clin. 7 (2017), 1–7, 10.1016/j.bbacli.2016.11.004.
Ngo, V., Duennwald, M.L., Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease. Antioxidants, 11, 2022, 2345, 10.3390/antiox11122345.
Beyer, R.E., Segura-Aguilar, J., di Bernardo, S., Cavazzoni, M., Fato, R., Fiorentini, D., Galli, M.C., Setti, M., Landi, L., Lenaz, G., The two-electron quinone reductase DT-diaphorase generates and maintains the antioxidant (reduced) form of coenzyme Q in membranes. Mol. Aspect. Med. 18:Suppl (1997), S15–S23, 10.1016/s0098-2997(97)00043-5.
Siegel, D., Gustafson, D.L., Dehn, D.L., Han, J.Y., Boonchoong, P., Berliner, L.J., Ross, D., NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol. Pharmacol. 65 (2004), 1238–1247, 10.1124/mol.65.5.1238.
Minnich, V., Smith, M.B., Brauner, M.J., Majerus, P.W., Glutathione biosynthesis in human erythrocytes. I. Identification of the enzymes of glutathione synthesis in hemolysates. J. Clin. Invest. 50 (1971), 507–513, 10.1172/JCI106519.
Badawi, A.F., Cavalieri, E.L., Rogan, E.G., Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16 alpha-hydroxylation of 17 beta-estradiol. Metabolism 50 (2001), 1001–1003, 10.1053/meta.2001.25592.
Hurh, Y.J., Chen, Z.H., Na, H.K., Han, S.Y., Surh, Y.J., 2-Hydroxyestradiol induces oxidative DNA damage and apoptosis in human mammary epithelial cells. J. Toxicol. Environ. Health 67 (2004), 1939–1953, 10.1080/15287390490514598.
Chen, Z.H., Na, H.K., Hurh, Y.J., Surh, Y.J., 4-Hydroxyestradiol induces oxidative stress and apoptosis in human mammary epithelial cells: possible protection by NF-kappaB and ERK/MAPK. Toxicol. Appl. Pharmacol. 208 (2005), 46–56, 10.1016/j.taap.2005.01.010.
Fisher, A.B., Dodia, C., Manevich, Y., Chen, J.W., Feinstein, S.I., Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J. Biol. Chem. 274 (1999), 21326–21334, 10.1074/jbc.274.30.21326.
Morgenstern, R., DePierre, J.W., Microsomal glutathione transferase. Purification in unactivated form and further characterization of the activation process, substrate specificity and amino acid composition. Eur. J. Biochem. 134 (1983), 591–597, 10.1111/j.1432-1033.1983.tb07607.x.
Mosialou, E., Piemonte, F., Andersson, C., Vos, R.M., van Bladeren, P.J., Morgenstern, R., Microsomal glutathione transferase: lipid-derived substrates and lipid dependence. Arch. Biochem. Biophys. 320 (1995), 210–216, 10.1016/0003-9861(95)90002-0.
Li, H., Benipal, B., Zhou, S., Dodia, C., Chatterjee, S., Tao, J.Q., Sorokina, E.M., Raabe, T., Feinstein, S.I., Fisher, A.B., Critical role of peroxiredoxin 6 in the repair of peroxidized cell membranes following oxidative stress. Free Radic. Biol. Med. 87 (2015), 356–365, 10.1016/j.freeradbiomed.2015.06.009.
Fisher, A.B., Vasquez-Medina, J.P., Dodia, C., Sorokina, E.M., Tao, J.Q., Feinstein, S.I., Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes. Redox Biol. 14 (2018), 41–46, 10.1016/j.redox.2017.08.008.
Wang, X., Phelan, S.A., Forsman-Semb, K., Taylor, E.F., Petros, C., Brown, A., Lerner, C.P., Paigen, B., Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J. Biol. Chem. 278 (2003), 25179–25190, 10.1074/jbc.M302706200.
Sobczak, M., Boczek, T., Kowalski, A., Wiktorska, M., Niewiarowska, J., Zylinska, L., Downregulation of microsomal glutathione-S-transferase 1 modulates protective mechanisms in differentiated PC12 cells. J. Physiol. Biochem. 70 (2014), 375–383, 10.1007/s13105-014-0312-9.
Forman, H.J., Zhang, H., Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20 (2021), 689–709, 10.1038/s41573-021-00233-1.
Bevere, M., Morabito, C., Mariggiò, M.A., Guarnieri, S., The oxidative balance orchestrates the main keystones of the functional activity of cardiomyocytes. Oxid. Med. Cell. Longev., 2022, 2022, 7714542, 10.1155/2022/7714542.
Lian, D., Chen, M.M., Wu, H., Deng, S., Hu, X., The role of oxidative stress in skeletal muscle myogenesis and muscle disease. Antioxidants, 11, 2022, 755, 10.3390/antiox11040755.
Marnett, L.J., Riggins, J.N., West, J.D., Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J. Clin. Invest. 111 (2003), 583–593, 10.1172/JCI18022.