[en] Patients with Duchenne muscular dystrophy (DMD) commonly show specific cognitive deficits in addition to a severe muscle impairment caused by the absence of dystrophin expression in skeletal muscle. These cognitive deficits have been related to the absence of dystrophin in specific regions of the central nervous system, notably cerebellar Purkinje cells (PCs). Dystrophin has recently been involved in GABAA receptors clustering at postsynaptic densities, and its absence, by disrupting this clustering, leads to decreased inhibitory input to PC. We performed an in vivo electrophysiological study of the dystrophin-deficient muscular dystrophy X-linked (mdx) mouse model of DMD to compare PC firing and local field potential (LFP) in alert mdx and control C57Bl/10 mice. We found that the absence of dystrophin is associated with altered PC firing and the emergence of fast (~160-200 Hz) LFP oscillations in the cerebellar cortex of alert mdx mice. These abnormalities were not related to the disrupted expression of calcium-binding proteins in cerebellar PC. We also demonstrate that cerebellar long-term depression is altered in alert mdx mice. Finally, mdx mice displayed a force weakness, mild impairment of motor coordination and balance during behavioural tests. These findings demonstrate the existence of cerebellar dysfunction in mdx mice. A similar cerebellar dysfunction may contribute to the cognitive deficits observed in patients with DMD.
Disciplines :
Pediatrics
Author, co-author :
Prigogine, Cynthia; Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium ; Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
Ruiz, Javier Marquez; Division of Neurosciences, Universidad Pablo de Olavide, Sevilla, Spain
Cebolla, Ana Maria ; Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
Deconinck, Nicolas; Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
Servais, Laurent ; Université de Liège - ULiège > Département des sciences cliniques ; Institut de Myologie, APHP Pitié-Salpêtrière, Paris, France
Gailly, Philippe ; Université de Liège - ULiège ; Laboratory of Cell Physiology, Université Catholique de Louvain, Brussels, Belgium
Dan, Bernard; Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium ; Rehabilitation Hospital Inkendaal, Vlezenbeek, Belgium
Cheron, Guy ; Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium ; Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
Language :
English
Title :
Cerebellar dysfunction in the mdx mouse model of Duchenne muscular dystrophy: An electrophysiological and behavioural study.
The authors would like to thank J. Francq and S. Henuy for providing excellent animal care; M. Dufief, E. Toussaint, T. D'Angelo, E. Hortmanns and M. Petieau for expert technical assistance; O. Shackman for his assistance with the behavioural testing; D. Ristori for statistical analysis. This work was supported in part by grants from the Fonds National de la Recherche Scientifique (FNRS) (Belgium), Fonds de Recherche de l'Universit\u00E9 Libre de Bruxelles (Belgium), Fonds de Recherche de l'Universit\u00E9 de Mons (Belgium), from the Brain & Society Foundation (Belgium) and Leibu Fond (Belgium). C. Prigogine was supported by a research fellowship/assistant of the Fonds National de la Recherche Scientifique (FNRS), Belgium.
Amoasii, L., Long, C., Li, H., Mireault, A. A., Shelton, J. M., Sanchez-Ortiz, E., McAnally, J. R., Bhattacharyya, S., Schmidt, F., Grimm, D., Hauschka, S. D., Bassel-Duby, R., & Olson, E. N. (2017). Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Science Translational Medicine, 9, 9. https://doi.org/10.1126/scitranslmed.aan8081
Anderson, J. L., Head, S. I., & Morley, J. W. (2003). Altered inhibitory input to Purkinje cells of dystrophin-deficient mice. Brain Research, 982, 280–283. https://doi.org/10.1016/S0006-8993(03)03018-X
Anderson, J. L., Morley, J. W., & Head, S. I. (2010). Enhanced homosynaptic LTD in cerebellar Purkinje cells of the dystrophic MDX mouse. Muscle & Nerve, 41, 329–334. https://doi.org/10.1002/mus.21467
Anderson, S. W., Routh, D. K., & Ionasescu, V. V. (1988). Serial position memory of boys with Duchenne muscular dystrophy. Developmental Medicine and Child Neurology, 30, 328–333. https://doi.org/10.1111/j.1469-8749.1988.tb14557.x
Avanzino, L., Pelosin, E., Vicario, C. M., Lagravinese, G., Abbruzzese, G., & Martino, D. (2016). Time processing and motor control in movement disorders. Frontiers in Human Neuroscience, 10, 631. https://doi.org/10.3389/fnhum.2016.00631
Bearzatto, B., Servais, L., Roussel, C., Gall, D., Baba-Aïssa, F., Schurmans, S., de Kerchove d'Exaerde, A., Cheron, G., & Schiffmann, S. N. (2006). Targeted calretinin expression in granule cells of calretinin-null mice restores normal cerebellar functions. FASEB Journal, 20, 380–382.
Bulfield, G., Siller, W. G., Wight, P. A., & Moore, K. J. (1984). X chromosome-linked muscular dystrophy (mdx) in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 81, 1189–1192. https://doi.org/10.1073/pnas.81.4.1189
Carretta, D., Santarelli, M., Vanni, D., Ciabatti, S., Sbriccoli, A., Pinto, F., & Minciacchi, D. (2003). Cortical and brainstem neurons containing calcium-binding proteins in a murine model of Duchenne's muscular dystrophy: Selective changes in the sensorimotor cortex. The Journal of Comparative Neurology, 456, 48–59. https://doi.org/10.1002/cne.10506
Chamberlain, J. S., Pearlman, J. A., Muzny, D. M., Gibbs, R. A., Ranier, J. E., Caskey, C. T., & Reeves, A. A. (1988). Expression of the murine Duchenne muscular dystrophy gene in muscle and brain. Science, 239, 1416–1418. https://doi.org/10.1126/science.3347839
Cheron, G., Gall, D., Servais, L., Dan, B., Maex, R., & Schiffmann, S. N. (2004). Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 24, 434–441. https://doi.org/10.1523/JNEUROSCI.3197-03.2004
Cheron, G., Márquez-Ruiz, J., Cheron, J., Prigogine, C., Ammann, C., Lukowski, R., Ruth, P., & Dan, B. (2018). Purkinje cell BKchannel ablation induces abnormal rhythm in deep cerebellar nuclei and prevents LTD. Scientific Reports, 8, 4220. https://doi.org/10.1038/s41598-018-22654-6
Cheron, G., Servais, L., Wagstaff, J., & Dan, B. (2005). Fast cerebellar oscillation associated with ataxia in a mouse model of Angelman syndrome. Neuroscience, 130, 631–637. https://doi.org/10.1016/j.neuroscience.2004.09.013
Comim, C. M., Ventura, L., Freiberger, V., Dias, P., Bragagnolo, D., Dutra, M. L., Amaral, R. A., Camargo-Fagundes, A. L. S., Reis, P. A., Castro-Faria-Neto, H. C., Vainzof, M., & Rosa, M. I. (2019). Neurocognitive impairment in mdx mice. Molecular Neurobiology, 56, 7608–7616. https://doi.org/10.1007/s12035-019-1573-7
Connors, N. C., Adams, M. E., Froehner, S. C., & Kofuji, P. (2004). The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. The Journal of Biological Chemistry, 279, 28387–28392. https://doi.org/10.1074/jbc.M402604200
Cotton, S., Voudouris, N. J., & Greenwood, K. M. (2001). Intelligence and Duchenne muscular dystrophy: Full-scale, verbal, and performance intelligence quotients. Developmental Medicine and Child Neurology, 43, 497–501.
Cyrulnik, S. E., & Hinton, V. J. (2008). Duchenne muscular dystrophy: A cerebellar disorder? Neuroscience and Biobehavioral Reviews, 32, 486–496. https://doi.org/10.1016/j.neubiorev.2007.09.001
D'Angelo, E., Koekkoek, S. K. E., Lombardo, P., Solinas, S., Ros, E., Garrido, J., Schonewille, M., & De Zeeuw, C. I. (2009). Timing in the cerebellum: Oscillations and resonance in the granular layer. Neuroscience, 162, 805–815. https://doi.org/10.1016/j.neuroscience.2009.01.048
Daoud, F., Angeard, N., Demerre, B., Martie, I., Benyaou, R., Leturcq, F., Cossée, M., Deburgrave, N., Saillour, Y., Tuffery, S., Urtizberea, A., Toutain, A., Echenne, B., Frischman, M., Mayer, M., Desguerre, I., Estournet, B., Réveillère, C., Penisson-Besnier, I., … Chelly, J. (2009). Analysis of Dp71 contribution in the severity of mental retardation through comparison of Duchenne and Becker patients differing by mutation consequences on Dp71 expression. Human Molecular Genetics, 18, 3779–3794. https://doi.org/10.1093/hmg/ddp320
Davie, J. T., Clark, B. A., & Häusser, M. (2008). The origin of the complex spike in cerebellar Purkinje cells. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 28, 7599–7609. https://doi.org/10.1523/JNEUROSCI.0559-08.2008
Deconinck, N., & Dan, B. (2007). Pathophysiology of duchenne muscular dystrophy: Current hypotheses. Pediatric Neurology, 36, 1–7. https://doi.org/10.1016/j.pediatrneurol.2006.09.016
Donders, J., & Taneja, C. (2009). Neurobehavioral characteristics of children with Duchenne muscular dystrophy. Child Neuropsychology: a Journal on Normal and Abnormal Development in Childhood and Adolescence, 15, 295–304.
Doorenweerd, N., Mahfouz, A., van Putten, M., Kaliyaperumal, R., T' Hoen, P.A.C., Hendriksen, J.G.M., Aartsma-Rus, A.M., Verschuuren, J.J.G.M., Niks, E.H., Reinders, M.J.T., Kan, H.E., & Lelieveldt, B.P.F. (2017) Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Scientific Reports, 7, 12575, https://doi.org/10.1038/s41598-017-12981-5
Dorman, C., Hurley, A. D., & D'Avignon, J. (1988). Language and learning disorders of older boys with Duchenne muscular dystrophy. Developmental Medicine and Child Neurology, 30, 316–327. https://doi.org/10.1111/j.1469-8749.1988.tb14556.x
Dubowitz, V., & Crome, L. (1969). The central nervous system in Duchenne muscular dystrophy. Brain: a Journal of Neurology, 92, 805–808. https://doi.org/10.1093/brain/92.4.805
Eckhorn, R., & Thomas, U. (1993). A new method for the insertion of multiple microprobes into neural and muscular tissue, including fiber electrodes, fine wires, needles and microsensors. Journal of Neuroscience Methods, 49, 175–179. https://doi.org/10.1016/0165-0270(93)90121-7
Empson, R. M., Huang, H., Nagaraja, R. Y., Roome, C. J., & Knöpfel, T. (2013). Enhanced synaptic inhibition in the cerebellar cortex of the ataxic PMCA2(-/-) knockout mouse. Cerebellum (London, England), 12, 667–675. https://doi.org/10.1007/s12311-013-0472-0
Fujimoto, T., Stam, K., Yaoi, T., Nakano, K., Arai, T., Okamura, T., & Itoh, K. (2023). Dystrophin short product, Dp71, interacts with AQP4 and Kir4.1 channels in the mouse cerebellar glial cells in contrast to Dp427 at inhibitory postsynapses in the Purkinje neurons. Molecular Neurobiology, 60, 3664–3677. https://doi.org/10.1007/s12035-023-03296-w
Gee, S. H., Madhavan, R., Levinson, S. R., Caldwell, J. H., Sealock, R., & Froehner, S. C. (1998). Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 18, 128–137. https://doi.org/10.1523/JNEUROSCI.18-01-00128.1998
Gómez-Beldarrain, M., García-Moncó, J. C., Rubio, B., & Pascual-Leone, A. (1998). Effect of focal cerebellar lesions on procedural learning in the serial reaction time task. Experimental Brain Research, 120, 25–30. https://doi.org/10.1007/s002210050374
Goossens, J., Daniel, H., Rancillac, A., van der Steen, J., Oberdick, J., Crépel, F., De Zeeuw, C. I., & Frens, M. A. (2001). Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 21, 5813–5823. https://doi.org/10.1523/JNEUROSCI.21-15-05813.2001
Gorecki, D., Geng, Y., Thomas, K., Hunt, S. P., Barnard, E. A., & Barnard, P. J. (1991). Expression of the dystrophin gene in mouse and rat brain. Neuroreport, 2, 773–776. https://doi.org/10.1097/00001756-199112000-00011
Grady, R. M., Wozniak, D. F., Ohlemiller, K. K., & Sanes, J. R. (2006). Cerebellar synaptic defects and abnormal motor behavior in mice lacking alpha- and beta-dystrobrevin. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 26, 2841–2851. https://doi.org/10.1523/JNEUROSCI.4823-05.2006
Hashimoto, Y., Kuniishi, H., Sakai, K., Fukushima, Y., Du, X., Yamashiro, K., Hori, K., Imamura, M., Hoshino, M., Yamada, M., Araki, T., Sakagami, H., Takeda, S., Itaka, K., Ichinohe, N., Muntoni, F., Sekiguchi, M., & Aoki, Y. (2022). Brain Dp140 alters glutamatergic transmission and social behaviour in the mdx52 mouse model of Duchenne muscular dystrophy. Progress in Neurobiology, 216, 102288. https://doi.org/10.1016/j.pneurobio.2022.102288
Häusser, M., & Clark, B. A. (1997). Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron, 19, 665–678. https://doi.org/10.1016/S0896-6273(00)80379-7
Haws, C. M., & Lansman, J. B. (1991). Calcium-permeable ion channels in cerebellar neurons from mdx mice. Proceedings of the Biological Sciences, 244, 185–189. https://doi.org/10.1098/rspb.1991.0068
Helleringer, R., Le Verger, D., Li, X., Izabelle, C., Chaussenot, R., Belmaati-Cherkaoui, M., Dammak, R., Decottignies, P., Daniel, H., Galante, M., & Vaillend, C. (2018) Cerebellar synapse properties and cerebellum-dependent motor and non-motor performance in Dp71-null mice. Disease Models & Mechanisms, 11, 11, https://doi.org/10.1242/dmm.033258
Hinton, V. J., De Vivo, D. C., Nereo, N. E., Goldstein, E., & Stern, Y. (2000). Poor verbal working memory across intellectual level in boys with Duchenne dystrophy. Neurology, 54, 2127–2132. https://doi.org/10.1212/WNL.54.11.2127
Hinton, V. J., De Vivo, D. C., Nereo, N. E., Goldstein, E., & Stern, Y. (2001). Selective deficits in verbal working memory associated with a known genetic etiology: The neuropsychological profile of duchenne muscular dystrophy. Journal of the International Neuropsychological Society, 7, 45–54. https://doi.org/10.1017/S1355617701711058
Hinton, V. J., Fee, R. J., Goldstein, E. M., & De Vivo, D. C. (2007). Verbal and memory skills in males with Duchenne muscular dystrophy. Developmental Medicine and Child Neurology, 49, 123–128. https://doi.org/10.1111/j.1469-8749.2007.00123.x
Hopf, F. W., & Steinhardt, R. A. (1992). Regulation of intracellular free calcium in normal and dystrophic mouse cerebellar neurons. Brain Research, 578, 49–54. https://doi.org/10.1016/0006-8993(92)90228-2
Jin, X.-H., Wang, H.-W., Zhang, X.-Y., Chu, C.-P., Jin, Y.-Z., Cui, S.-B., & Qiu, D.-L. (2017). Mechanisms of spontaneous climbing fiber discharge-evoked pauses and output modulation of cerebellar Purkinje cell in mice. Frontiers in Cellular Neuroscience, 11, 247. https://doi.org/10.3389/fncel.2017.00247
Jung, D., Pons, F., Léger, J. J., Aunis, D., & Rendon, A. (1991). Dystrophin in central nervous system: A developmental, regional distribution and subcellular localization study. Neuroscience Letters, 124, 87–91. https://doi.org/10.1016/0304-3940(91)90828-H
Kim, T. W., Wu, K., & Black, I. B. (1995). Deficiency of brain synaptic dystrophin in human Duchenne muscular dystrophy. Annals of Neurology, 38, 446–449. https://doi.org/10.1002/ana.410380315
Knuesel, I., Mastrocola, M., Zuellig, R. A., Bornhauser, B., Schaub, M. C., & Fritschy, J. M. (1999). Short communication: Altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice). The European Journal of Neuroscience, 11, 4457–4462. https://doi.org/10.1046/j.1460-9568.1999.00887.x
Kueh, S. L. L., Dempster, J., Head, S. I., & Morley, J. W. (2011). Reduced postsynaptic GABAA receptor number and enhanced gaboxadol induced change in holding currents in Purkinje cells of the dystrophin-deficient mdx mouse. Neurobiology of Disease, 43, 558–564. https://doi.org/10.1016/j.nbd.2011.05.002
Kueh, S. L. L., Head, S. I., & Morley, J. W. (2008). GABA(a) receptor expression and inhibitory post-synaptic currents in cerebellar Purkinje cells in dystrophin-deficient mdx mice. Clinical and Experimental Pharmacology & Physiology, 35, 207–210. https://doi.org/10.1111/j.1440-1681.2007.04816.x
Leibowitz, D., & Dubowitz, V. (1981). Intellect and behaviour in Duchenne muscular dystrophy. Developmental Medicine and Child Neurology, 23, 577–590. https://doi.org/10.1111/j.1469-8749.1981.tb02039.x
Lidov, H. G., Byers, T. J., & Kunkel, L. M. (1993). The distribution of dystrophin in the murine central nervous system: An immunocytochemical study. Neuroscience, 54, 167–187. https://doi.org/10.1016/0306-4522(93)90392-S
Lidov, H. G., Byers, T. J., Watkins, S. C., & Kunkel, L. M. (1990). Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature, 348, 725–728. https://doi.org/10.1038/348725a0
Llinás, R., & Sugimori, M. (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. The Journal of Physiology, 305, 171–195. https://doi.org/10.1113/jphysiol.1980.sp013357
Mapelli, J., & D'Angelo, E. (2007). The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 27, 1285–1296. https://doi.org/10.1523/JNEUROSCI.4873-06.2007
Maresh, K., Papageorgiou, A., Ridout, D., Harrison, N. A., Mandy, W., Skuse, D., & Muntoni, F. (2023). Startle responses in Duchenne muscular dystrophy: A novel biomarker of brain dystrophin deficiency. Brain: a Journal of Neurology, 146, 252–265. https://doi.org/10.1093/brain/awac048
Markati, T., Oskoui, M., Farrar, M. A., Duong, T., Goemans, N., & Servais, L. (2022). Emerging therapies for Duchenne muscular dystrophy. Lancet Neurology, 21, 814–829. https://doi.org/10.1016/S1474-4422(22)00125-9
Márquez-Ruiz, J., & Cheron, G. (2012). Sensory stimulation-dependent plasticity in the cerebellar cortex of alert mice. PLoS ONE, 7, e36184. https://doi.org/10.1371/journal.pone.0036184
Mento, G., Tarantino, V., & Bisiacchi, P. S. (2011). The neuropsychological profile of infantile Duchenne muscular dystrophy. The Clinical Neuropsychologist, 25, 1359–1377. https://doi.org/10.1080/13854046.2011.617782
Muntoni, F., Mateddu, A., & Serra, G. (1991). Passive avoidance behaviour deficit in the mdx mouse. Neuromuscular Disorders, 1, 121–123. https://doi.org/10.1016/0960-8966(91)90059-2
Naidoo, M., & Anthony, K. (2020). Dystrophin Dp71 and the neuropathophysiology of Duchenne muscular dystrophy. Molecular Neurobiology, 57, 1748–1767. https://doi.org/10.1007/s12035-019-01845-w
Nicchia, G. P., Rossi, A., Nudel, U., Svelto, M., & Frigeri, A. (2008). Dystrophin-dependent and -independent AQP4 pools are expressed in the mouse brain. Glia, 56, 869–876. https://doi.org/10.1002/glia.20661
Nudel, U., Robzyk, K., & Yaffe, D. (1988). Expression of the putative Duchenne muscular dystrophy gene in differentiated myogenic cell cultures and in the brain. Nature, 331, 635–638. https://doi.org/10.1038/331635a0
Okamoto, K., Kimura, H., & Sakai, Y. (1983). Effects of taurine and GABA on ca spikes and Na spikes in cerebellar purkinje cells in vitro: Intrasomatic study. Brain Research, 260, 249–259. https://doi.org/10.1016/0006-8993(83)90678-9
Orso, M., Migliore, A., Polistena, B., Russo, E., Gatto, F., Monterubbianesi, M., d'Angela, D., Spandonaro, F., & Pane, M. (2023). Duchenne muscular dystrophy in Italy: A systematic review of epidemiology, quality of life, treatment adherence, and economic impact. PLoS ONE, 18, e0287774. https://doi.org/10.1371/journal.pone.0287774
Pascual-Morena, C., Cavero-Redondo, I., Álvarez-Bueno, C., Jiménez-López, E., Saz-Lara, A., Martínez-García, I., & Martínez-Vizcaíno, V. (2023). Global prevalence of intellectual developmental disorder in dystrophinopathies: A systematic review and meta-analysis. Developmental Medicine and Child Neurology, 65, 734–744. https://doi.org/10.1111/dmcn.15481
Pereira da Silva, J. D., Campos, D. V., Nogueira-Bechara, F. M., Stilhano, R. S., Han, S. W., Sinigaglia-Coimbra, R., Lima-Landman, M. T. R., Lapa, A. J., & Souccar, C. (2018). Altered release and uptake of gamma-aminobutyric acid in the cerebellum of dystrophin-deficient mice. Neurochemistry International, 118, 105–114. https://doi.org/10.1016/j.neuint.2018.06.001
Rafael, J. A., Nitta, Y., Peters, J., & Davies, K. E. (2000). Testing of SHIRPA, a mouse phenotypic assessment protocol, on Dmd (mdx) and Dmd (mdx3cv) dystrophin-deficient mice. Mammalian Genome: Official Journal of the International Mammalian Genome Society, 11, 725–728. https://doi.org/10.1007/s003350010149
Ramani, P. K., Fawcett, K., Guntrum, D., Samuel, H., Ciafaloni, E., & Veerapandiyan, A. (2023). Epilepsy characteristics in Duchenne and Becker muscular dystrophies. Child Neurology Open, 10, 2329048X231159484. https://doi.org/10.1177/2329048X231159484
Roggeri, L., Rivieccio, B., Rossi, P., & D'Angelo, E. (2008). Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 28, 6354–6359. https://doi.org/10.1523/JNEUROSCI.5709-07.2008
Schiffmann, S. N., Cheron, G., Lohof, A., d'Alcantara, P., Meyer, M., Parmentier, M., & Schurmans, S. (1999). Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proceedings of the National Academy of Sciences of the United States of America, 96, 5257–5262. https://doi.org/10.1073/pnas.96.9.5257
Schwaller, B., Meyer, M., & Schiffmann, S. (2002). “New” functions for “old” proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum (London, England), 1, 241–258. https://doi.org/10.1080/147342202320883551
Sekiguchi, M., Zushida, K., Yoshida, M., Maekawa, M., Kamichi, S., Yoshida, M., Sahara, Y., Yuasa, S., Takeda, S., & Wada, K. (2009). A deficit of brain dystrophin impairs specific amygdala GABAergic transmission and enhances defensive behaviour in mice. Brain: a Journal of Neurology, 132, 124–135. https://doi.org/10.1093/brain/awn253
Servais, L., Bearzatto, B., Schwaller, B., Dumont, M., De Saedeleer, C., Dan, B., Barski, J. J., Schiffmann, S. N., & Cheron, G. (2005). Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k. The European Journal of Neuroscience, 22, 861–870. https://doi.org/10.1111/j.1460-9568.2005.04275.x
Servais, L., Hourez, R., Bearzatto, B., Gall, D., Schiffmann, S. N., & Cheron, G. (2007). Purkinje cell dysfunction and alteration of long-term synaptic plasticity in fetal alcohol syndrome. Proceedings of the National Academy of Sciences of the United States of America, 104, 9858–9863. https://doi.org/10.1073/pnas.0607037104
Sicot, G., Servais, L., Dinca, D. M., Leroy, A., Prigogine, C., Medja, F., Braz, S. O., Huguet-Lachon, A., Chhuon, C., Nicole, A., Gueriba, N., Oliveira, R., Dan, B., Furling, D., Swanson, M. S., Guerrera, I. C., Cheron, G., Gourdon, G., & Gomes-Pereira, M. (2017). Downregulation of the glial GLT1 glutamate transporter and Purkinje cell dysfunction in a mouse model of myotonic dystrophy. Cell Reports, 19, 2718–2729. https://doi.org/10.1016/j.celrep.2017.06.006
Snow, W. M., Anderson, J. E., & Fry, M. (2014). Regional and genotypic differences in intrinsic electrophysiological properties of cerebellar Purkinje neurons from wild-type and dystrophin-deficient mdx mice. Neurobiology of Learning and Memory, 107, 19–31. https://doi.org/10.1016/j.nlm.2013.10.017
Stay, T. L., Miterko, L. N., Arancillo, M., Lin, T., & Sillitoe, R. V. (2019). In vivo cerebellar circuit function is disrupted in an mdx mouse model of Duchenne muscular dystrophy. Disease Models & Mechanisms, 13, dmm040840.
Steuber, V., Mittmann, W., Hoebeek, F., Silver, R. A., De Zeeuw, C. Häusser, M., & De Schutter, E. (2007). Cerebellar LTD and pattern recognition by Purkinje cells. Neuron, 54, 121–136. https://doi.org/10.1016/j.neuron.2007.03.015
Sugihara, I., Lang, E. J., & Llinás, R. (1995). Serotonin modulation of inferior olivary oscillations and synchronicity: A multiple-electrode study in the rat cerebellum. The European Journal of Neuroscience, 7, 521–534. https://doi.org/10.1111/j.1460-9568.1995.tb00657.x
Tadayoni, R., Rendon, A., Soria-Jasso, L. E., & Cisneros, B. (2012). Dystrophin Dp71: The smallest but multifunctional product of the Duchenne muscular dystrophy gene. Molecular Neurobiology, 45, 43–60. https://doi.org/10.1007/s12035-011-8218-9
Torriero, S., Oliveri, M., Koch, G., Lo Gerfo, E., Salerno, S., Petrosini, L., & Caltagirone, C. (2007). Cortical networks of procedural learning: Evidence from cerebellar damage. Neuropsychologia, 45, 1208–1214. https://doi.org/10.1016/j.neuropsychologia.2006.10.007
Tuckett, E., Gosetti, T., Hayes, A., Rybalka, E., & Verghese, E. (2015). Increased calcium in neurons in the cerebral cortex and cerebellum is not associated with cell loss in the mdx mouse model of Duchenne muscular dystrophy. Neuroreport, 26, 785–790. https://doi.org/10.1097/WNR.0000000000000425
Uchino, M., Teramoto, H., Naoe, H., Miike, T., Yoshioka, K., & Ando, M. (1994). Dystrophin and dystrophin-related protein in the central nervous system of normal controls and Duchenne muscular dystrophy. Acta Neuropathologica (Berl), 87, 129–134. https://doi.org/10.1007/BF00296181
Uchino, M., Teramoto, H., Naoe, H., Yoshioka, K., Miike, T., & Ando, M. (1994). Localisation and characterisation of dystrophin in the central nervous system of controls and patients with Duchenne muscular dystrophy. Journal of Neurology, Neurosurgery, and Psychiatry, 57, 426–429. https://doi.org/10.1136/jnnp.57.4.426
Vaillend, C., Billard, J.-M., & Laroche, S. (2004). Impaired long-term spatial and recognition memory and enhanced CA1 hippocampal LTP in the dystrophin-deficient Dmd (mdx) mouse. Neurobiology of Disease, 17, 10–20. https://doi.org/10.1016/j.nbd.2004.05.004
Vaillend, C., Rendon, A., Misslin, R., & Ungerer, A. (1995). Influence of dystrophin-gene mutation on mdx mouse behavior. I. Retention deficits at long delays in spontaneous alternation and bar-pressing tasks. Behavior Genetics, 25, 569–579. https://doi.org/10.1007/BF02327580
van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274, 1724–1726. https://doi.org/10.1126/science.274.5293.1724
Vandeputte, C., Taymans, J.-M., Casteels, C., Coun, F., Ni, Y., Van Laere, K., & Baekelandt, V. (2010). Automated quantitative gait analysis in animal models of movement disorders. BMC Neuroscience, 11, 92. https://doi.org/10.1186/1471-2202-11-92
Vicari, S., Piccini, G., Mercuri, E., Battini, R., Chieffo, D., Bulgheroni, S., Pecini, C., Lucibello, S., Lenzi, S., Moriconi, F., Pane, M., D'Amico, A., Astrea, G., Baranello, G., Riva, D., Cioni, G., & Alfieri, P. (2018). Implicit learning deficit in children with Duchenne muscular dystrophy: Evidence for a cerebellar cognitive impairment? PLoS ONE, 13, e0191164. https://doi.org/10.1371/journal.pone.0191164
Waite, A., Tinsley, C. L., Locke, M., & Blake, D. J. (2009). The neurobiology of the dystrophin-associated glycoprotein complex. Annals of Medicine, 41, 344–359. https://doi.org/10.1080/07853890802668522
Wallace, G. Q., & McNally, E. M. (2009). Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annual Review of Physiology, 71, 37–57. https://doi.org/10.1146/annurev.physiol.010908.163216
Welsh, J. P., Lang, E. J., Suglhara, I., & Llinás, R. (1995). Dynamic organization of motor control within the olivocerebellar system. Nature, 374, 453–457. https://doi.org/10.1038/374453a0
Whitehead, N. P., Yeung, E. W., & Allen, D. G. (2006). Muscle damage in mdx (dystrophic) mice: Role of calcium and reactive oxygen species. Clinical and Experimental Pharmacology & Physiology, 33, 657–662. https://doi.org/10.1111/j.1440-1681.2006.04394.x
Wicksell, R. K., Kihlgren, M., Melin, L., & Eeg-Olofsson, O. (2004). Specific cognitive deficits are common in children with Duchenne muscular dystrophy. Developmental Medicine and Child Neurology, 46, 154–159. https://doi.org/10.1111/j.1469-8749.2004.tb00466.x
Wu, W.-C., Bradley, S. P., Christie, J. M., & Pugh, J. R. (2022). Mechanisms and consequences of cerebellar Purkinje cell disinhibition in a mouse model of Duchenne muscular dystrophy. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 42, 2103–2115. https://doi.org/10.1523/JNEUROSCI.1256-21.2022
Zanou, N., Schakman, O., Louis, P., Ruegg, U. T., Dietrich, A., Birnbaumer, L., & Gailly, P. (2012). Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration. The Journal of Biological Chemistry, 287, 14524–14534. https://doi.org/10.1074/jbc.M112.341784
Zanou, N., Shapovalov, G., Louis, M., Tajeddine, N., Gallo, C., Van Schoor, M., Anguish, I., Cao, M. L., Schakman, O., Dietrich, A., Lebacq, J., Ruegg, U., Roulet, E., Birnbaumer, L., & Gailly, P. (2010). Role of TRPC1 channel in skeletal muscle function. American Journal of Physiology. Cell Physiology, 298, C149–C162. https://doi.org/10.1152/ajpcell.00241.2009
Zarrouki, F., Goutal, S., Vacca, O., Garcia, L., Tournier, N., Goyenvalle, A., & Vaillend, C. (2022). Abnormal expression of synaptic and Extrasynaptic GABAA receptor subunits in the dystrophin-deficient mdx mouse. International Journal of Molecular Sciences, 23, 12617. https://doi.org/10.3390/ijms232012617