No full text
Scientific conference in universities or research centers (Scientific conferences in universities or research centers)
Detection of Textual Motifs and Multichannel Deep Learning with LASLA lemmatized and tagged files: two case studies
Longrée, Dominique; Thon, Valérie
2024
 

Files


Full Text
No document available.

Send to



Details



Keywords :
deep learning; Hyperdeep; artificial intelligence; intertextuality; textual motif
Abstract :
[en] We wish to explore the difference between Deep Learning applied simply to the lexical forms of a text and Multichannel Deep Learning, which also takes into account the lemmas and morphosyntax. More precisely, the idea is to better understand the criteria, that is the ‘textual motifs’ on which Deep Learning relies to offer its classification. We will propose two case studies, illustrating at the same time the possibilities of exploiting the Hyperdeep software: a study of intertextuality (Ovid) and an attempt to date some letters written by Peter Damian.
Disciplines :
Computer science
Author, co-author :
Longrée, Dominique ;  Université de Liège - ULiège > Département des sciences de l'antiquité > Langue et littérature latines
Thon, Valérie  ;  Université de Liège - ULiège > Mondes anciens
Language :
English
Title :
Detection of Textual Motifs and Multichannel Deep Learning with LASLA lemmatized and tagged files: two case studies
Publication date :
29 November 2024
Event name :
Computational Approaches to Ancient Greek and Latin Workshop
Event organizer :
Marijke Beersmans, Evelien De Graaf, Margherita Fantoli, Alek Keersmaekers, Wouter Mercelis, Saskia Peels, Silvia Stopponi
Event place :
Leuven, Belgium
Event date :
du 28 au 29 novembre 2024
Available on ORBi :
since 01 December 2024

Statistics


Number of views
9 (2 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi