[en] KMT2C and KMT2D, encoding histone H3 lysine 4 methyltransferases, are among the most commonly mutated genes in triple-negative breast cancer (TNBC). However, how these mutations may shape epigenomic and transcriptomic landscapes to promote tumorigenesis is largely unknown. Here we describe that deletion of Kmt2c or Kmt2d in non-metastatic murine models of TNBC drives metastasis, especially to the brain. Global chromatin profiling and chromatin immunoprecipitation followed by sequencing revealed altered H3K4me1, H3K27ac and H3K27me3 chromatin marks in knockout cells and demonstrated enhanced binding of the H3K27me3 lysine demethylase KDM6A, which significantly correlated with gene expression. We identified Mmp3 as being commonly upregulated via epigenetic mechanisms in both knockout models. Consistent with these findings, samples from patients with KMT2C-mutant TNBC have higher MMP3 levels. Downregulation or pharmacological inhibition of KDM6A diminished Mmp3 upregulation induced by the loss of histone-lysine N-methyltransferase 2 (KMT2) and prevented brain metastasis similar to direct downregulation of Mmp3. Taken together, we identified the KDM6A-matrix metalloproteinase 3 axis as a key mediator of KMT2C/D loss-driven metastasis in TNBC.
Disciplines :
Oncology
Author, co-author :
Seehawer, Marco ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA ; Department of Medicine, Harvard Medical School, Boston, MA, USA
Li, Zheqi ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA ; Department of Medicine, Harvard Medical School, Boston, MA, USA
Nishida, Jun ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA ; Department of Medicine, Harvard Medical School, Boston, MA, USA
Foidart, Pierre ; Université de Liège - ULiège > Département des sciences cliniques ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA ; Department of Medicine, Harvard Medical School, Boston, MA, USA
Reiter, Andrew H ; The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
Rojas-Jimenez, Ernesto; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA ; Department of Medicine, Harvard Medical School, Boston, MA, USA
Goyette, Marie-Anne ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA ; Department of Medicine, Harvard Medical School, Boston, MA, USA
Yan, Pengze; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA ; Department of Medicine, Harvard Medical School, Boston, MA, USA
Raval, Shaunak; The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
Munoz Gomez, Miguel; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
Cejas, Paloma ; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
Long, Henry W ; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
Papanastasiou, Malvina ; The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
Polyak, Kornelia ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. kornelia_polyak@dfci.harvard.edu ; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. kornelia_polyak@dfci.harvard.edu ; Department of Medicine, Harvard Medical School, Boston, MA, USA. kornelia_polyak@dfci.harvard.edu
NIH. NCI - National Institutes of Health. National Cancer Institute EMBO - European Molecular Biology Organization CIFAR - Canadian Institute for Advanced Research
Funding text :
We thank members of our laboratories for critical reading of this manuscript and useful discussions. We thank A. Shilatifard (Northwestern University) for providing KMT2C antibodies and S. Spisak (Dana-Farber Cancer Institute) for providing sgRNA/mCherry and Cas9/GFP plasmids. We thank the Dana-Farber Cancer Institute Molecular Biology and Flow Cytometry Core Facilities, Dana-Farber/Harvard Cancer Center Rodent Histopathology Core facility, Dana-Farber Cancer Institute Animal Resource Facilities and Translational Immunogenomics Laboratory for outstanding services. This research was supported by the National Cancer Institute (P01CA250959 to K.P. and H.W.L. and R35 CA197623 to K.P.), Ludwig Center at Harvard (to K.P.), Saverin Breast Cancer Research Fund (to K.P.), Canadian Institutes of Health Research (to M.-A.G.) and EMBO (to M.S.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.K.P. serves on the Scientific Advisory Board of and holds equity options in IDEAYA Biosciences and Scorpion Therapeutics. K.P. and H.W.L. receive sponsored research funding through the Dana-Farber Cancer Institute from Novartis. The remaining authors declare no competing interests.
H. Sung et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA Cancer J. Clin. 2021 71 209 249 33538338 10.3322/caac.21660
A.C. Garrido-Castro N.U. Lin K. Polyak Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment Cancer Discov. 2019 9 176 198 1:CAS:528:DC%2BB3cXhtlGrsbbJ 30679171 6387871 10.1158/2159-8290.CD-18-1177
A. Darlix et al. Impact of breast cancer molecular subtypes on the incidence, kinetics and prognosis of central nervous system metastases in a large multicentre real-life cohort Br. J. Cancer 2019 121 991 1000 1:CAS:528:DC%2BC1MXit12ks7zO 31719684 6964671 10.1038/s41416-019-0619-y
F. Bertucci et al. Genomic characterization of metastatic breast cancers Nature 2019 569 560 564 1:CAS:528:DC%2BC1MXhtVegsbrO 31118521 10.1038/s41586-019-1056-z
A.J. Morgan A. Giannoudis C. Palmieri The genomic landscape of breast cancer brain metastases: a systematic review Lancet Oncol. 2021 22 e7 e17 1:CAS:528:DC%2BB3MXitlSjsb8%3D 33387511 10.1016/S1470-2045(20)30556-8
C.C. Sze A. Shilatifard MLL3/MLL4/COMPASS family on epigenetic regulation of enhancer function and cancer Cold Spring Harb. Perspect. Med. 2016 6 a026427 27638352 5088509 10.1101/cshperspect.a026427
R. Rickels et al. A small UTX stabilization domain of Trr is conserved within mammalian MLL3-4/COMPASS and is sufficient to rescue loss of viability in null animals Genes Dev. 2020 34 1493 1502 1:CAS:528:DC%2BB3cXisV2rt73J 33033055 7608747 10.1101/gad.339762.120
A. Shilatifard The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis Annu. Rev. Biochem. 2012 81 65 95 1:CAS:528:DC%2BC38XhtVGls7nF 22663077 4010150 10.1146/annurev-biochem-051710-134100
D. Cocciadiferro et al. Dissecting KMT2D missense mutations in Kabuki syndrome patients Hum. Mol. Genet. 2018 27 3651 3668 1:CAS:528:DC%2BC1MXos1aqsro%3D 30107592 6488975 10.1093/hmg/ddy241
Y. Zhang et al. Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis Nat. Cell Biol. 2022 24 554 564 1:CAS:528:DC%2BB38XpvVWjsrc%3D 35411083 9037576 10.1038/s41556-022-00877-0
J. Cui et al. MLL3 loss drives metastasis by promoting a hybrid epithelial–mesenchymal transition state Nat. Cell Biol. 2023 25 145 158 1:CAS:528:DC%2BB3sXltVWgsQ%3D%3D 36604594 10003829 10.1038/s41556-022-01045-0
F. Na et al. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming Nat. Cancer 2022 3 753 767 1:CAS:528:DC%2BB38XhtlajsLjF 35449309 9969417 10.1038/s43018-022-00361-6
X. Jin et al. A metastasis map of human cancer cell lines Nature 2020 588 331 336 1:CAS:528:DC%2BB3cXisFCgtLbM 33299191 8439149 10.1038/s41586-020-2969-2
G. Wang et al. CRISPR-GEMM pooled mutagenic screening identifies KMT2D as a major modulator of immune checkpoint blockade Cancer Discov. 2020 10 1912 1933 1:CAS:528:DC%2BB3MXktFWisb4%3D 32887696 7710536 10.1158/2159-8290.CD-19-1448
V. Appay S.L. Rowland-Jones RANTES: a versatile and controversial chemokine Trends Immunol. 2001 22 83 87 1:CAS:528:DC%2BD3MXhvVKhsro%3D 11286708 10.1016/S1471-4906(00)01812-3
Q. Qin et al. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data Genome Biol. 2020 21 32033573 7007693 10.1186/s13059-020-1934-6
S. Wang et al. Target analysis by integration of transcriptome and ChIP-seq data with BETA Nat. Protoc. 2013 8 2502 2515 1:CAS:528:DC%2BC2cXkt1ygtr0%3D 24263090 4135175 10.1038/nprot.2013.150
R.E. Vandenbroucke C. Libert Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov. 2014 13 904 927 1:CAS:528:DC%2BC2cXhvF2jtb3I 25376097 10.1038/nrd4390
P. Llinas-Arias et al. Chromatin insulation orchestrates matrix metalloproteinase gene cluster expression reprogramming in aggressive breast cancer tumors Mol. Cancer 2023 22 1:CAS:528:DC%2BB3sXisFGitb3P 38017545 10683115 10.1186/s12943-023-01906-8
A. Chang et al. Recruitment of KMT2C/MLL3 to DNA damage sites mediates DNA damage responses and regulates PARP inhibitor sensitivity in cancer Cancer Res. 2021 81 3358 3373 1:CAS:528:DC%2BB3MXhs1WqurvE 33853832 8260460 10.1158/0008-5472.CAN-21-0688
D.J. Papke Jr. et al. Validation of a targeted next-generation sequencing approach to detect mismatch repair deficiency in colorectal adenocarcinoma Mod. Pathol. 2018 31 1882 1890 1:CAS:528:DC%2BC1cXht1Cns7%2FN 29955144 10.1038/s41379-018-0091-x
A. Zehir et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients Nat. Med. 2017 23 703 713 1:CAS:528:DC%2BC2sXntFKitLo%3D 28481359 5461196 10.1038/nm.4333
J. Andricovich et al. Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors Cancer Cell 2018 33 512 526.e8 1:CAS:528:DC%2BC1cXksVentLw%3D 29533787 5854186 10.1016/j.ccell.2018.02.003
R. Chen et al. Kmt2c mutations enhance HSC self-renewal capacity and convey a selective advantage after chemotherapy Cell Rep. 2021 34 1:CAS:528:DC%2BB3MXksFSnt74%3D 33596429 7951951 10.1016/j.celrep.2021.108751
K. Gala et al. KMT2C mediates the estrogen dependence of breast cancer through regulation of ERα enhancer function Oncogene 2018 37 4692 4710 1:CAS:528:DC%2BC1cXpsVCrs7w%3D 29755131 6107480 10.1038/s41388-018-0273-5
L. Duplaquet et al. KDM6A epigenetically regulates subtype plasticity in small cell lung cancer Nat. Cell Biol. 2023 25 1346 1358 1:CAS:528:DC%2BB3sXhslantrjL 37591951 10.1038/s41556-023-01210-z
S. Bae B.J. Lesch H3K4me1 distribution predicts transcription state and poising at promoters Front. Cell Dev. Biol. 2020 8 289 32432110 7214686 10.3389/fcell.2020.00289
M.J. Duffy T.M. Maguire A. Hill E. McDermott N. O’Higgins Metalloproteinases: role in breast carcinogenesis, invasion and metastasis Breast Cancer Res. 2000 2 252 257 1:CAS:528:DC%2BD3cXlvFOgs7Y%3D 11250717 138784 10.1186/bcr65
G.B. Fields The rebirth of matrix metalloproteinase inhibitors: moving beyond the dogma Cells 2019 8 984 1:CAS:528:DC%2BB3cXmtVSltrY%3D 31461880 6769477 10.3390/cells8090984
M.B. Siegel et al. Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer J. Clin. Invest. 2018 128 1371 1383 29480819 5873890 10.1172/JCI96153
D.O. Dele-Oni et al. Proteomic profiling dataset of chemical perturbations in multiple biological backgrounds Sci. Data 2021 8 34433823 8387426 10.1038/s41597-021-01008-4
M. Cornwell et al. VIPER: visualization pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis BMC Bioinformatics 2018 19 135 29649993 5897949 10.1186/s12859-018-2139-9
M.D. Robinson D.J. McCarthy G.K. Smyth edgeR: a Bioconductor package for differential expression analysis of digital gene expression data Bioinformatics 2010 26 139 140 1:CAS:528:DC%2BD1MXhs1WlurvO 19910308 10.1093/bioinformatics/btp616
M.E. Ritchie et al. limma powers differential expression analyses for RNA-sequencing and microarray studies Nucleic Acids Res. 2015 43 e47 25605792 4402510 10.1093/nar/gkv007
M.I. Love W. Huber S. Anders Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol. 2014 15 25516281 4302049 10.1186/s13059-014-0550-8
X. Qiu et al. CoBRA: containerized bioinformatics workflow for reproducible ChIP/ATAC-seq analysis Genom. Proteom. Bioinform. 2021 19 652 661 10.1016/j.gpb.2020.11.007
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).
J. Feng T. Liu B. Qin Y. Zhang X.S. Liu Identifying ChIP-seq enrichment using MACS Nat. Protoc. 2012 7 1728 1740 1:CAS:528:DC%2BC38Xht1OhsLzF 22936215 10.1038/nprot.2012.101
H. Li et al. The sequence alignment/map format and SAMtools Bioinformatics 2009 25 2078 2079 19505943 2723002 10.1093/bioinformatics/btp352
A.R. Quinlan I.M. Hall BEDTools: a flexible suite of utilities for comparing genomic features Bioinformatics 2010 26 841 842 1:CAS:528:DC%2BC3cXivFGkurc%3D 20110278 2832824 10.1093/bioinformatics/btq033
S. Heinz et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities Mol. Cell 2010 38 576 589 1:CAS:528:DC%2BC3cXns1SlsLc%3D 20513432 2898526 10.1016/j.molcel.2010.05.004
F. Ramirez et al. deepTools2: a next generation web server for deep-sequencing data analysis Nucleic Acids Res. 2016 44 W160 W165 1:CAS:528:DC%2BC2sXhtV2itrfI 27079975 4987876 10.1093/nar/gkw257
Y. Liao G.K. Smyth W. Shi featureCounts: an efficient general purpose program for assigning sequence reads to genomic features Bioinformatics 2014 30 923 930 1:CAS:528:DC%2BC2cXltFGqu7c%3D 24227677 10.1093/bioinformatics/btt656