[en] Strain-rate-dependent mechanical properties and impact performance of manufactured epoxy-based nanocomposites are investigated. As reinforcements, fumed silica (FS) and halloysite nanotube (HNT) are used alongside Albipox 1000 and Nanopox F700. First, the internal structures of the composites are visualised using scanning electron microscopy (SEM). To identify the strain-rate-dependent mechanical properties, three-point bend tests are conducted at three different strain rate levels. For the impact resistance, Charpy impact tests are performed. For further investigations of the mechanical properties of the composites, mean-field homogenisation (MFH) and finite element (FE) analyses on the representative volume elements (RVE) are performed for each type of composite material. Overall, the modelling and experiments are in good agreement and account for the mechanical behaviour of these epoxy-based nanocomposites.
Disciplines :
Mechanical engineering
Author, co-author :
Tüfekci, Mertol; Department of Mechanical Engineering, Imperial College London, London, United Kingdom
Özkal, Burak; Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
Maharaj, Chris; Department of Mechanical and Manufacturing Engineering, The University of the West Indies, St. Augustine, Trinidad and Tobago
Liu, Haibao; Centre for Aeronautics, Cranfield University, Cranfield, United Kingdom
Dear, John P.; Department of Mechanical Engineering, Imperial College London, London, United Kingdom
Salles, Loïc ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mechanical aspects of turbomachinery and aerospace propulsion ; Department of Mechanical Engineering, Imperial College London, London, United Kingdom
Language :
English
Title :
Strain-rate-dependent mechanics and impact performance of epoxy-based nanocomposites
Mertol Tüfekci would like to acknowledge the support of the Scientific and Technological Research Council of Turkey (TUBITAK) (fund BİDEB 2213 2016/2 ) that makes this research possible.Mertol Tüfekci would like to acknowledge the support of the Scientific and Technological Research Council of Turkey (TUBITAK) (fund BİDEB 2213 2016/2) that makes this research possible. The authors would like to thank Evonik for the courtesy of providing materials and Dr.Dr.-Ing. Stephan Sprenger for his helpful guidance. The authors would also like to acknowledge computational resources and support provided by the Imperial College Research Computing Service ( http://dx.doi.org/10.14469/hpc/2232).
Brassart, L., Doghri, I., Delannay, L., Homogenization of elasto-plastic composites coupled with a nonlinear finite element analysis of the equivalent inclusion problem. Int. J. Solids Struct. 47:5 (2010), 716–729, 10.1016/j.ijsolstr.2009.11.013.
Jrad, H., Dion, J.L., Renaud, F., Tawfiq, I., Haddar, M., Experimental characterization, modeling and parametric identification of the non linear dynamic behavior of viscoelastic components. Eur. J. Mech. A Solids 42 (2013), 176–187, 10.1016/j.euromechsol.2013.05.004.
Acarer, S., Pir, İ., Tüfekci, M., Türkoğlu Demirkol, G., Tüfekci, N., Manufacturing and characterisation of polymeric membranes for water treatment and numerical investigation of mechanics of nanocomposite membranes. Polymers, 13(10), 2021, 10.3390/polym13101661 URL: https://www.mdpi.com/2073-4360/13/10/1661.
Monetto, I., Drugan, W.J., A micromechanics-based nonlocal constitutive equation for elastic composites containing randomly oriented spheroidal heterogeneities. J. Mech. Phys. Solids 52:2 (2004), 359–393, 10.1016/S0022-5096(03)00103-0.
Drugan, W.J., Two exact micromechanics-based nonlocal constitutive equations for random linear elastic composite materials. J. Mech. Phys. Solids 51:9 (2003), 1745–1772, 10.1016/S0022-5096(03)00049-8.
Luo, J.J., Daniel, I.M., Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 63:11 (2003), 1607–1616, 10.1016/S0266-3538(03)00060-5.
Schapery, R.A., On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9:4 (1969), 295–310, 10.1002/pen.760090410 URL: http://onlinelibrary.wiley.com/doi/10.1002/pen.760090410/abstract.
Schapery, R.A., Nonlinear viscoelastic constitutive equations for composites based on work potentials. Appl. Mech. Rev. 47 (1994), s269–s275, 10.1115/1.3124421.
Zeltmann, S.E., Bharath Kumar, B.R., Doddamani, M., Gupta, N., Prediction of strain rate sensitivity of high density polyethylene using integral transform of dynamic mechanical analysis data. Polymer 101 (2016), 1–6, 10.1016/j.polymer.2016.08.053.
Kim, B., Choi, J., Yang, S., Yu, S., Cho, M., Multiscale modeling of interphase in crosslinked epoxy nanocomposites. Composites B 120 (2017), 128–142, 10.1016/j.compositesb.2017.03.059.
Lu, X., Detrez, F., Yvonnet, J., Bai, J., Identification of elastic properties of interphase and interface in graphene-polymer nanocomposites by atomistic simulations. Compos. Sci. Technol., 213, 2021, 10.1016/j.compscitech.2021.108943.
Owais, M., Zhao, J., Imani, A., Wang, G., Zhang, H., Zhang, Z., Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Composites A 117 (2019), 11–22, 10.1016/j.compositesa.2018.11.006.
Bashar, M., Sundararaj, U., Mertiny, P., Microstructure and mechanical properties of epoxy hybrid nanocomposites modified with acrylic tri-block-copolymer and layered-silicate nanoclay. Composites A 43 (2012), 945–954, 10.1016/j.compositesa.2012.01.010.
Fan, S., Gao, C., Duan, C., Zhang, S., Zhang, P., Yu, L., Zhang, Z., Geometry effect of copper nanoparticles and nanowires on polyetheretherketone-matrix nanocomposites: Thermal conductivity, dynamic mechanical properties and wear resistance. Compos. Sci. Technol., 219, 2022, 109224, 10.1016/J.COMPSCITECH.2021.109224.
M. Tüfekci, T. Mace, B. Özkal, J.P. Dear, C.W. Schwingshackl, L. Salles, Dynamic Behaviour of a Nanocomposite: Epoxy Reinforced with Fumed Silica Nanoparticles, in: XXV ICTAM, Milano, 2021.
Ozdemir, N.G., Zhang, T., Aspin, I., Scarpa, F., Hadavinia, H., Song, Y., Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications. Express Polym. Lett. 10:5 (2016), 394–407, 10.3144/expresspolymlett.2016.37 URL: http://www.expresspolymlett.com/letolt.php?file=EPL-0006743&mi=c.
Battistella, M., Cascione, M., Fiedler, B., Wichmann, M.H., Quaresimin, M., Schulte, K., Fracture behaviour of fumed silica/epoxy nanocomposites. Composites A 39 (2008), 1851–1858, 10.1016/j.compositesa.2008.09.010.
Zappalorto, M., Pontefisso, A., Fabrizi, A., Quaresimin, M., Mechanical behaviour of epoxy/silica nanocomposites: Experiments and modelling. Composites A 72 (2015), 58–64, 10.1016/j.compositesa.2015.01.027.
Jordan, J., Jacob, K.I., Tannenbaum, R., Sharaf, M.A., Jasiuk, I., Experimental trends in polymer nanocomposites - A review. Mater. Sci. Eng. A 393 (2005), 1–11, 10.1016/j.msea.2004.09.044.
Kliem, M., Høgsberg, J., Vanwalleghem, J., Filippatos, A., Hoschützky, S., Fotsing, E.R., Berggreen, C., Damping analysis of cylindrical composite structures with enhanced viscoelastic properties. Appl. Compos. Mater. 26:1 (2019), 85–113, 10.1007/s10443-018-9684-2.
Xu, X., Gupta, N., Determining elastic modulus from dynamic mechanical analysis data: Reduction in experiments using adaptive surrogate modeling based transform. Polymer 157 (2018), 166–171, 10.1016/j.polymer.2018.10.036.
Xu, X., Koomson, C., Doddamani, M., Behera, R.K., Gupta, N., Extracting elastic modulus at different strain rates and temperatures from dynamic mechanical analysis data: A study on nanocomposites. Composites B 159 (2019), 346–354, 10.1016/j.compositesb.2018.10.015.
Esmaeeli, R., Aliniagerdroudbari, H., Hashemi, S.R., Jbr, C., Farhad, S., Designing a new dynamic mechanical analysis (DMA) system for testing viscoelastic materials at high frequencies. Model. Simul. Eng., 2019, 2019, 10.1155/2019/7026267.
Pierro, E., Carbone, G., A new technique for the characterization of viscoelastic materials: Theory, experiments and comparison with DMA. J. Sound Vib., 515, 2021, 116462, 10.1016/j.jsv.2021.116462 URL: https://doi.org/10.1016/j.jsv.2021.1164.
Zhou, M., Liu, J., Yang, H., Zhang, L., A multi-scale analysis on reinforcement origin of static and dynamic mechanics in graphene-elastomer nanocomposites. Compos. Sci. Technol., 2022, 109617, 10.1016/J.COMPSCITECH.2022.109617 URL: https://linkinghub.elsevier.com/retrieve/pii/S0266353822003591.
Tufekci, M., Rendu, Q., Yuan, J., Dear, J.P., Salles, L., Cherednichenko, A.V., Stress and modal analysis of a rotating blade and the effects of nonlocality. Proceedings of the ASME Turbo Expo, Vol. 10B-2020, 2020, American Society of Mechanical Engineers, 1–12, 10.1115/GT2020-14821 URL: https://asmedigitalcollection.asme.org/GT/proceedings/GT2020/84225/Virtual,Online/1095287.
Bertoldi, K., Bigoni, D., Drugan, W.J., Structural interfaces in linear elasticity. Part I: Nonlocality and gradient approximations. J. Mech. Phys. Solids 55 (2007), 1–34, 10.1016/j.jmps.2006.06.004.
Drugan, W.J., Willis, J.R., A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44 (1996), 497–524, 10.1016/0022-5096(96)00007-5.
Hassanzadeh-Aghdam, M.K., Evaluating the effective creep properties of graphene-reinforced polymer nanocomposites by a homogenization approach. Compos. Sci. Technol., 209, 2021, 108791, 10.1016/J.COMPSCITECH.2021.108791.
Mori, T., Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21:5 (1973), 571–574, 10.1016/0001-6160(73)90064-3.
Odegard, G.M., Clancy, T.C., Gates, T.S., Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46:2 (2005), 553–562, 10.1016/j.polymer.2004.11.022 arXiv:0444500847.
Tüfekci, M., Durak, S.G., Pir, İ., Acar, T.O., Demirkol, G.T., Tüfekci, N., Manufacturing, characterisation and mechanical analysis of polyacrylonitrile membranes. Polymers 12:10 (2020), 1–21, 10.3390/polym12102378.
Tüfekci, M., Pir, İ., Tüfekci, E., Nondimensional analysis of two-dimensional elastic porous materials with regularly distributed circular holes. XXV ICTAM, 2021.
Mirkhalaf, S.M., Eggels, E.H., van Beurden, T.J., Larsson, F., Fagerström, M., A finite element based orientation averaging method for predicting elastic properties of short fiber reinforced composites. Composites B, 202(September), 2020, 108388, 10.1016/j.compositesb.2020.108388.
Krop, S., Meijer, H.E., Breemen, L.C.V., Multi-mode modeling of global and local deformation, and failure, in particle filled epoxy systems. Composites A 88 (2016), 1–9, 10.1016/j.compositesa.2016.05.012.
Guven, I., Cinar, K., Micromechanical modeling of particulate-filled composites using micro-CT to create representative volume elements. Int. J. Mech. Mater. Des. 15 (2019), 695–714, 10.1007/s10999-018-09438-6.
Bargmann, S., Klusemann, B., Markmann, J., Schnabel, J.E., Schneider, K., Soyarslan, C., Wilmers, J., Generation of 3D representative volume elements for heterogeneous materials: A review. Prog. Mater. Sci. 96 (2018), 322–384, 10.1016/j.pmatsci.2018.02.003.
Müzel, S.D., Bonhin, E.P., Guimarães, N.M., Guidi, E.S., Application of the finite element method in the analysis of composite materials: A review. Polymers, 12(4), 2020, 10.3390/POLYM12040818.
Berahman, R., Raiati, M., Mehrabi Mazidi, M., Paran, S.M.R., Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: Effect of matrix hardness and HNT content. Mater. Des. 104 (2016), 333–345, 10.1016/j.matdes.2016.04.099.
Ravichandran, G., Rathnakar, G., Santhosh, N., Chennakeshava, R., Hashmi, M.A., Enhancement of mechanical properties of epoxy/halloysite nanotube (HNT) nanocomposites. SN Appl. Sci. 1:4 (2019), 1–8, 10.1007/s42452-019-0323-9.
ASTM D7264/D7264M-07, G., Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. Annual Book of ASTM Standards, Vol. i, 2007, 1–11, 10.1520/D7264.
Hsiao, H.M., Daniel, I.M., Strain rate behavior of composite materials. Composites B 29:5 (1998), 521–533, 10.1016/S1359-8368(98)00008-0.
ASTM-D6110-10, H.M., Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics. 2010, ASTM, 17, 10.1520/D6110-18.1.
Pontefisso, A., Zappalorto, M., Quaresimin, M., An efficient RVE formulation for the analysis of the elastic properties of spherical nanoparticle reinforced polymers. Comput. Mater. Sci. 96 (2015), 319–326, 10.1016/j.commatsci.2014.09.030.
Singh, I.V., Shedbale, A.S., Mishra, B.K., Material property evaluation of particle reinforced composites using finite element approach. J. Compos. Mater. 50 (2016), 2757–2771, 10.1177/0021998315612539.
Pucha, R.V., Worthy, J., Representative volume element-based design and analysis tools for composite materials with nanofillers. J. Compos. Mater. 48 (2014), 2117–2129, 10.1177/0021998313494916.
Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K., Wagner, H.D., Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites A 36 (2005), 1555–1561, 10.1016/j.compositesa.2005.02.006.
Gitman, I.M., Askes, H., Sluys, L.J., Representative volume: Existence and size determination. Eng. Fract. Mech. 74 (2007), 2518–2534, 10.1016/j.engfracmech.2006.12.021.
Catalanotti, G., On the generation of RVE-based models of composites reinforced with long fibres or spherical particles. Compos. Struct. 138 (2016), 84–95, 10.1016/j.compstruct.2015.11.039.
Bray, D.J., Dittanet, P., Guild, F.J., Kinloch, A.J., Masania, K., Pearson, R.A., Taylor, A.C., The modelling of the toughening of epoxy polymers via silica nanoparticles: The effects of volume fraction and particle size. Polymer 54 (2013), 7022–7032, 10.1016/j.polymer.2013.10.034.
Carolan, D., Ivankovic, A., Kinloch, A.J., Sprenger, S., Taylor, A.C., Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices. J. Mater. Sci. 52 (2017), 1767–1788, 10.1007/s10853-016-0468-5.
Hsieh, T.H., Kinloch, A.J., Masania, K., Taylor, A.C., Sprenger, S., The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 51 (2010), 6284–6294, 10.1016/j.polymer.2010.10.048.
Huang, Y., Kinloch, A.J., Modelling of the toughening mechanisms in rubber-modified epoxy polymers - Part I Finite element analysis studies. J. Mater. Sci. 27:10 (1992), 2753–2762, 10.1007/BF00540702 URL: http://www.springerlink.com/index/10.1007/BF00540702.
Abadyan, M., Khademi, V., Bagheri, R., Motamedi, P., Kouchakzadeh, M.A., Haddadpour, H., Loading rate-induced transition in toughening mechanism of rubber-modified epoxy. J. Macromol. Sci. B 49 (2010), 602–614, 10.1080/00222341003595253.