The Tribomechadynamics Research Challenge: Confronting blind predictions for the linear and nonlinear dynamics of a thin-walled jointed structure with measurement results
Krack, Malte; Brake, Matthew R.W.; Schwingshackl, Christophet al.
2025 • In Mechanical Systems and Signal Processing, 224, p. 112016
Friction damping; Geometric nonlinearity; Jointed structures; Nonlinear dynamics; Nonlinear modal analysis; Blind predictions; Frictional contact; Geometric non-linearity; Jointed structure; Research challenges; Thin plate; Thin-walled; Vibration behaviours; Control and Systems Engineering; Signal Processing; Civil and Structural Engineering; Aerospace Engineering; Mechanical Engineering; Computer Science Applications
Abstract :
[en] The present article summarizes the submissions to the Tribomechadynamics Research Challenge announced in 2021. The task was a blind prediction of the vibration behavior of a system comprising a thin plate clamped on two sides via bolted joints. Both geometric and frictional contact nonlinearities are expected to be relevant. Provided were the CAD models and technical drawings of all parts as well as assembly instructions. The main objective was to predict the frequency and damping ratio of the lowest-frequency mode as function of the amplitude. Many different prediction approaches were pursued, ranging from well-known methods to very recently developed ones. After the submission deadline, the system has been fabricated and tested. The aim of this article is to evaluate the current state of the art in modeling and vibration prediction, and to provide directions for future methodological advancements.
The Tribomechadynamics Research Challenge: Confronting blind predictions for the linear and nonlinear dynamics of a thin-walled jointed structure with measurement results
M. Krack is grateful for the funding received by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [Project 450056469, 495957501]. This work presents results of the Tribomechadynamics Research Camp (TRC). The authors thank MTU Aero Engines AG for sponsoring the TRC 2022. The authors are grateful to Maximilian W. Beck for aiding with the design of the benchmark system. S. Hermann is grateful for the funding received by the EIPHI Graduate School, ANR-17-EURE-0002. N. Jamia gratefully acknowledges the support of the Engineering and Physical Sciences Research Council, United Kingdom through the award of the Programme Grant \u201CDigital Twins for Improved Dynamic Design\u201D, grant number EP/R006768/1. P. Tiso and A. A. Morsy acknowledge the funding of the Swiss National Science Foundation project \u201CMeso-scale modeling of Friction in reduced non-linear interface Dynamics: MesoFriDy\u201D. M.Y. Khan, J. Ortiz, D.A. Najera-Flores, R.J. Kuether, and P.R. Miles acknowledge that this article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for its contents. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan https://www.energy.gov/downloads/doe-public-access-plan. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.M. Krack is grateful for the funding received by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [Project 450056469, 495957501].S. Hermann is grateful for the funding received by the EIPHI Graduate School , ANR-17-EURE-0002 .N. Jamia gratefully acknowledges the support of the Engineering and Physical Sciences Research Council through the award of the Programme Grant \u201CDigital Twins for Improved Dynamic Design\u201D, grant number EP/R006768/1 .
Segalman, D.J., Bergman, L.A., Ewins, D.J., Report on the SNL/NSF International Workshop on Joint Mechanics Arlington Virginia, 16-18 October 2006: Technical Report SAND2007-7761., 2007, Sandia National Laboratories, Albuquerque, NM.
Segalman, D.J., Bergman, L.A., Ewins, D.J., Report on the SNL/AWE/NSF International Workshop on Joint Mechanics, Dartington, United Kingdom, 27-29 April 2009: Technical Report SAND2010-5458., 2010, Sandia National Laboratories, Albuquerque, NM.
Starr, M.J., Brake, M.R., Segalman, D.J., Bergman, L.A., Ewins, D.J., Proceedings of the Third International Workshop on Jointed Structures: Technical Report SAND2013-6655., 2013, Sandia National Laboratories, Albuquerque, NM.
Brake, M.R.W., Ewins, D.J., Segalman, D.J., Bergman, L.A., Quinn, D.D., Proceedings of the Fourth International Workshop on Jointed Structures: Technical Report SAND2016-9962., 2016, Sandia National Laboratories, Albuquerque, NM.
Mathis, A.T., Balaji, N.N., Kuether, R.J., Brink, A.R., Brake, M.R.W., Quinn, D.D., A review of damping models for structures with mechanical joints. Appl. Mech. Rev., 72, 2020, 040802.
Deaner, B.J., Allen, M.S., Starr, M.J., Segalman, D.J., Sumali, H., Application of viscous and iwan modal damping models to experimental measurements from bolted structures. ASME J. Vib. Acoust., 137, 2015, 021012.
Roettgen, D.R., Allen, M.S., Nonlinear characterization of a bolted, industrial structure using a modal framework. Mech. Syst. Signal Process. 84 (2017), 152–170.
Bograd, S., Reuß, P., Schmidt, A., Gaul, L., Mayer, M., Modeling the dynamics of mechanical joints. Mech. Syst. Signal Process. 25 (2011), 2801–2826.
Petrov, E.P., A high-accuracy model reduction for analysis of nonlinear vibrations in structures with contact interfaces. ASME J. Eng. Gas Turb. Power, 133, 2011, 102503.
Zucca, S., Firrone, C.M., Gola, M.M., Modeling underplatform dampers for turbine blades: A refined approach in the frequency domain. J. Vib. Control 19 (2013), 1087–1102.
Balaji, N.N., Chen, W., Brake, M.R.W., Traction-based multi-scale nonlinear dynamic modeling of bolted joints: Formulation, application, and trends in micro-scale interface evolution. Mech. Syst. Signal Process., 139, 2020, 106615 (1–32).
Armand, J., Pesaresi, L., Salles, L., Wong, C., Schwingshackl, C.W., A modelling approach for the nonlinear dynamics of assembled structures undergoing fretting wear. Proc. R. Soc. A, 475, 2019, 20180731.
Brink, A.R., Kuether, R.J., Fronk, M.D., Witt, B.L., Nation, B.L., Contact stress and linearized modal predictions of as-built preloaded assembly. ASME J. Vib. Acoust., 142, 2020, 051106.
Balaji, N.N., Dreher, T., Krack, M., Brake, M.R.W., Reduced order modeling for the dynamics of jointed structures through hyper-reduced interface representation. Mech. Syst. Signal Process., 149, 2021, 107249.
Balaji, N.N., Brake, M.R.W., The surrogate system hypothesis for joint mechanics. Mech. Syst. Signal Process. 126 (2019), 42–64.
Lacayo, R.M., Pesaresi, L., Groß, J., Fochler, D., Armand, J., Salles, L., Schwingshackl, C., Allen, M.S., Brake, M.R.W., Nonlinear modeling of structures with bolted joints: a comparison of two approaches based on a time-domain and frequency-domain solver. Mech. Syst. Signal Process. 114 (2019), 413–438.
Porter, J.H., Balaji, N.N., Little, C.R., Brake, M.R.W., A quantitative assessment of the model form error of friction models across different interface representations for jointed structures. Mech. Syst. Signal Process., 163, 2022, 108163.
Brake, M.R.W., (eds.) The Mechanics of Jointed Structures, 2017, Springer.
Brake, M.R.W., Krack, M., Schwingshackl, C.W., Special issue: Tribomechadynamics. ASME J. Vib. Acoust., 142, 2020, 050301.
Dreher, T., Brake, M.R.W., Seeger, B., Krack, M., situ, In., Real-time measurements of contact pressure internal to jointed interfaces during dynamic excitation of an assembled structure. Mech. Syst. Signal Process., 160, 2021, 107859.
Chen, W., Jin, M., Lawal, I.G., Brake, M.R.W., Song, H., Measurement of slip and separation in jointed structures with non-flat interfaces. Mech. Syst. Signal Process., 134, 2019, 106325 (1–22).
Brons, M., Kasper, T.A., Chauda, G., Klaassen, S.W.B., Schwingshackl, C.W., Brake, M.R.W., Experimental investigation of local dynamics in bolted lap joints using digital image correlation. ASME J. Vib. Acoust., 142, 2020, 051114.
Ruan, M., The Variability of Strains in Bolts and the Effecton on Preload in Jointed Structures. (Masters Dissertation), 2019, Rice University, Houston, TX.
Karpov, M.V., Measurement of Bolt Dynamics in Jointed Structures Undergoing Dynamic Loading. (Masters Dissertation), 2022, Rice University, Houston, TX.
Brake, M.R.W., Contact modeling across scales: From materials to structural dynamics applications. J. Struct. Dyn. 1 (2021), 49–135.
Porter, J.H., Brake, M.R., Towards a predictive, physics-based friction model for the dynamics of jointed structures. Mech. Syst. Signal Process., 192, 2023, 110210, 10.1016/j.ymssp.2023.110210 URL https://www.sciencedirect.com/science/article/pii/S0888327023001176.
Müser, M.H., Dapp, W.B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, T.A., Persson, B.N.J., Harris, K., Bennet, A., Schulze, K., Rohde, S., Ijfu, P., Sawyer, W.G., Angelini, T., Esfahani, H.A., Kadkhodaei, M., Akbarzadeh, S., Wu, J.-J., Vorlaufer, G., Vernes, A., Solhjoo, S., Vakis, A.I., Jackson, R.L., Xu, Y., Streator, J., Rostami, A., Dini, D., Medina, S., Carbone, G., Bottiglione, F., Afferrante, L., Monti, J., Pastewka, L., Robbins, M.O., Greenwood, J.A., Meeting the contact-mechanics challenge. Tribol. Lett. 65 (2017), 1–18.
Boyce, B.L., Kramer, S.L.B., Fang, H.E., Cordova, T.E., Neilsen, M.K., Dion, K., Kaczmarowski, A.K., Karasz, E., Xue, L., Gross, A.J., Ghahremaninezhad, A., Ravi-Chandar, K., Lin, S.-P., Chi, S.-W., Chen, J.S., Yreux, E., Rüter, M., Qian, D., Zhou, Z., Bhamare, S., O'Connor, D.T., Tang, S., Elkhodary, K.I., Zhao, J., Hochhalter, J.D., Cerrone, A.R., Ingraffea, A.R., Wawrzynek, P.A., Carter, B.J., Emery, J.M., Veilleux, M.G., Yang, P., Gan, Y., Zhang, X., Chen, Z., Madenci, E., Kilic, B., Zhang, T., Fang, E., Liu, P., Lua, J., Nahshon, K., Miraglia, M., Cruce, J., DeFrese, R., Moyer, E.T., Brinckmann, S., Quinkert, L., Pack, K., Luo, M., Wierzbicki, T., The Sandia fracture challenge: Blind round robin predictions of ductile tearing. Int. J. Fract. 186 (2014), 5–68.
Boyce, B.L., Kramer, S.L.B., Bosiljevac, T.R., Corona, E., Moore, J.A., Elkhodary, K., Simha, C.H.M., Williams, B.W., Cerrone, A.R., Nonn, A., Hochhalter, J.D., Bomarito, G.F., Warner, J.E., Carter, B.J., Warner, D.H., Ingraffea, A.R., Zhang, T., Fang, X., Lua, J., Chiaruttini, V., Mazière, M., Feld-Payet, S., Yastrebov, V.A., Besson, J., Chaboche, J.-L., Lian, J., Di, Y., Wu, B., Novokshanov, D., Vajragupta, N., Kucharczyk, P., Brinnel, V., Döbereiner, B., Münstermann, S., Neilsen, M.K., Dion, K., Karlson, K.N., Foulk, J.W. III, Brown, A.A., Veilleux, M.G., Bignell, J.L., Sanborn, S.E., Jones, C.A., Mattie, P.D., Pack, K., Wierzbicki, T., Chi, S.-W., Lin, S.-P., Mahdavi, A., Predan, J., Zadravec, J., Gross, A.J., Ravi-Chandar, K., Xue, L., The second Sandia fracture challenge: Predictions of ductile failure under quasi-static and moderate-rate dynamic loading. Int. J. Fract. 198 (2016), 5–100.
Kramer, S.L.B., Jones, A., Mostafa, A., Ravaji, B., Tancogne-Dejean, T., Roth, C.C., Bandpay, M.G., Pack, K., Foster, J.T., Behzadinasab, M., Sobotka, J.C., McFarland, J.M., Stein, J., Spear, A.D., Newell, P., Czabaj, M.W., Williams, B., Simha, H., Gesing, M., Gilkey, L.N., Jones, C.A., Dingreville, R., Sanborn, S.E., Bignell, J.L., Cerrone, A.R., Keim, V., Nonn, A., Cooreman, S., Thibaux, P., Ames, N., Connor, D.O., Parno, M., Davis, B., Tucker, J., Coudrillier, B., Karlson, K.N., Ostien, J.T., Foulk, J.W. III, Hammetter, C.I., Grange, S., Emery, J.M., Brown, J.A., Bishop, J.E., Johnson, K.L., Ford, K.R., Brinckmann, S., Neilsen, M.K., Jackiewicz, J., Ravi-Chandar, K., Ivanoff, T., Salzbrenner, B.C., Boyce, B.L., The third Sandia fracture challenge: Predictions of ductile fracture in additively manufactured metal. Int. J. Fract. 218 (2019), 5–61.
Brake, M.R.W., Schwingshackl, C.W., Reuß, P., Observations of variability and repeatability in jointed structures. Mech. Syst. Signal Process. 129 (2019), 282–307.
Zare Estakhraji, S.I., Wall, M., Capito, J., Allen, M.S., A thorough comparison between measurements and predictions of the amplitude dependent natural frequencies and damping of a bolted structure. J. Sound Vib., 544, 2023, 117397, 10.1016/j.jsv.2022.117397 URL https://www.sciencedirect.com/science/article/pii/S0022460X22005806.
Lacarbonara, W., A Theoretical and Experimental Investigation of Nonlinear Vibrations of Buckled Beams. (Ph.D. thesis), 1997, Virginia Tech.
Virgin, L.N., Vibration of Axially-Loaded Structures. 2007, Cambridge University Press.
Najera-Flores, D.A., Ortiz, J., Khan, M., Kuether, R., Miles, P., A bayesian multi-fidelity neural network to predict nonlinear frequency backbone curves. J. Verif. Valid. Uncertain. Quantif., 2024, 1–14, 10.1115/1.4064776.
Shetty, D., Park, K., Payne, C., Allen, M., Predicting nonlinearity in the tmd benchmark structure using qsma and sice. Nonlinear Structures & Systems, Vol. 1, 2023, Springer, 281–287.
Shetty, D., Allen, M.S., Park, K., A new approach to model a system with both friction and geometric nonlinearity. J. Sound Vib., 2023, 10.1016/j.jsv.2023.117631.
Lasen, M., Salles, L., Dini, D., Schwingshackl, C., Tribomechadynamics challenge 2021: A multi-harmonic balance analysis from imperial college london. Nonlinear Structures & Systems, Vol. 1, 2023, Springer, 79–82.
Hippold, P., Müller, F., Gross, J., Krack, M., Nonlinear dynamic substructuring of thin-walled jointed structures. 2024 in preparation.
Morsy, A.A., Kast, M., Tiso, P., A frequency-domain reduced order model for joints by hyper-reduction and model-driven sampling. Mech. Syst. Signal Process., 185, 2023, 109744, 10.1016/j.ymssp.2022.109744 URL https://www.sciencedirect.com/science/article/pii/S0888327022008135.
Team, C.D., Cubit 15.4 User Documentation: Tech. Rep. SAND2019-3478 W., 2019, Sandia National Laboratories, Albuquerque, NM.
Kuether, R.J., Brake, M.R., Instantaneous frequency and damping from transient ring-down data. Dynamics of Coupled Structures, Vol. 4, 2016, Springer, 253–263.
Jin, M., Brake, M.R.W., Song, H., Comparison of nonlinear system identification methods for free decay measurements with application to jointed structures. J. Sound Vib. 453 (2019), 268–293.
Wall, M., Allen, M.S., Kuether, R.J., Observations of modal coupling due to bolted joints in an experimental benchmark structure. Mech. Syst. Signal Process., 2022, 10.1016/j.ymssp.2021.107968.
Ungar, E.E., Loss factors of viscoelastic systems in terms of energy concepts. J. Acoust. Soc. Am., 34(7), 1962, 741, 10.1121/1.1937307.
Iwan, W.D., A distributed-element model for hysteresis and its steady-state dynamic response. J. Appl. Mech. 33:4 (1966), 893–900, 10.1115/1.3625199 URL https://asmedigitalcollection.asme.org/appliedmechanics/article/33/4/893/385167/A-DistributedElement-Model-for-Hysteresis-and-Its.
Segalman, D.J., A four-parameter iwan model for lap-type joints. J. Appl. Mech., 72(5), 2005 URL http://AppliedMechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1415458.
Segalman, D.J., A Modal Approach to Modeling Spatially Distributed Vibration Energy Dissipation: Tech. Rep. SAND(9933) 2010-476326., 2010, Sandia National Lab., Albuquerque, NM.
Park, K., Allen, M.S., Quasi-static modal analysis for reduced order modeling of geometrically nonlinear structures. J. Sound Vib., 502, 2021, 116076, 10.1016/j.jsv.2021.116076 URL https://linkinghub.elsevier.com/retrieve/pii/S0022460X21001486.
Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C., Nonlinear normal modes, part II: Toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23:1 (2009), 195–216, 10.1016/j.ymssp.2008.04.003 URL https://www.sciencedirect.com/science/article/pii/S0888327008001027.
G. Masing, Self-stretching and hardening for brass, in: Proceedings of the 2nd International Congress for Applied Mechanics, Zurich, Switzerland, 1926, pp. 332–335.
Jayakumar, P., Modeling and Identification in Structural Dynamics: Report or Paper., 1987, California Institute of Technology, Pasadena, CA issue: 87-01 Number: 87-01 Publisher: California Institute of Technology. URL https://resolver.caltech.edu/CaltechEERL:1987.EERL-87-01.
Singh, A., Wall, M., Allen, M.S., Kuether, R.J., Spider configurations for models with discrete iwan elements. Nonlinear Structures and Systems, Vol. 1, 2020, Springer, 25–38.
Lindberg, E., Hörlin, N.-E., Göransson, P., Component mode synthesis using undeformed interface coupling modes to connect soft and stiff substructures. Shock Vib. 20:1 (2013), 157–170.
Schwingshackl, C., Petrov, E., Ewins, D., Measured and estimated friction interface parameters in a nonlinear dynamic analysis. Mech. Syst. Signal Process. 28 (2012), 574–584.
Li, D., Xu, C., Wang, D., Wen, L., Numerical modeling and analysis of nonlinear dynamic response for a bolted joint beam considering interface frictional contact. ASME International Mechanical Engineering Congress and Exposition, Vol. 52033, 2018, American Society of Mechanical Engineers, V04AT06A053.
Huang, N.E., Hilbert-Huang Transform and Its Applications, Vol. 16. 2014, World Scientific.
Smith, M., ABAQUS/Standard User's Manual, Version 6.9. 2009, Dassault Systèmes Simulia Corp, United States.
Salles, L., Blanc, L., Thouverez, F., Gouskov, A.M., Jean, P., Dual time stepping algorithms with the high order harmonic balance method for contact interfaces with fretting-wear. J. Eng. Gas Turb. Power, 134(3), 2011, 10.1115/1.4004236.
Petrov, E.P., Explicit finite element models of friction dampers in forced response analysis of bladed disks. J. Eng. Gas Turb. Power, 130(2), 2008, 022502, 10.1115/1.2772633.
Pesaresi, L., Salles, L., Jones, A., Green, J., Schwingshackl, C., Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications. Mech. Syst. Signal Process. 85 (2017), 662–679, 10.1016/j.ymssp.2016.09.007.
Fantetti, A., Tamatam, L.R., Volvert, M., Lawal, I., Liu, L., Salles, L., Brake, M., Schwingshackl, C.W., Nowell, D., The impact of fretting wear on structural dynamics: Experiment and simulation. Tribol. Int. 138 (2019), 111–124, 10.1016/j.triboint.2019.05.023 URL http://www.sciencedirect.com/science/article/pii/S0301679X19302828.
Ewins, D.J., Modal Testing: Theory, Practice and Application. 2009, John Wiley & Sons.
McEwan, M., Wright, J., Cooper, J., Leung, A., A finite element/modal technique for nonlinear plate and stiffened panel response prediction. 19th AIAA Applied Aerodynamics Conference, Fluid Dynamics and Co-Located Conferences, 2001, American Institute of Aeronautics and Astronautics, 10, 10.2514/6.2001-1595.
Hollkamp, J.J., Gordon, R.W., Reduced-order models for nonlinear response prediction: Implicit condensation and expansion. J. Sound Vib. 318:4–5 (2008), 1139–1153, 10.1016/j.jsv.2008.04.035.
Krack, M., Nonlinear modal analysis of nonconservative systems: Extension of the periodic motion concept. Comput. Struct. 154 (2015), 59–71, 10.1016/j.compstruc.2015.03.008.
Jain, S., Tiso, P., Rutzmoser, J.B., Rixen, D.J., A quadratic manifold for model order reduction of nonlinear structural dynamics. Comput. Struct. 188 (2017), 80–94, 10.1016/j.compstruc.2017.04.005 arXiv:1610.09902.
Allen, M.S., Rixen, D., Van Der Seijs, M., Tiso, P., Abrahamsson, T., Mayes, R.L., Substructuring in Engineering Dynamics: Emerging Numerical and Experimental Techniques. 2019, Springer, CISM International Centre for Mechanical Sciences URL http://dx.doi.org/10.1007/978-3-030-25532-9.
Marconi, J., Tiso, P., Quadrelli, D.E., Braghin, F., A higher-order parametric nonlinear reduced-order model for imperfect structures using Neumann expansion. Nonlinear Dynam. 104:4 (2021), 3039–3063, 10.1007/s11071-021-06496-y.
Krack, M., Gross, J., Harmonic Balance for Nonlinear Vibration Problems. 2019, Springer, 10.1007/978-3-030-14023-6.
Woiwode, L., Balaji, N.N., Kappauf, J., Tubita, F., Guillot, L., Vergez, C., Cochelin, B., Grolet, A., Krack, M., Comparison of two algorithms for harmonic balance and path continuation. Mech. Syst. Signal Process., 136, 2020, 106503, 10.1016/j.ymssp.2019.106503.
Müller, F., Woiwode, L., Gross, J., Scheel, M., Krack, M., Nonlinear damping quantification from phase-resonant tests under base excitation. Mech. Syst. Signal Process., 2022, 10.1016/j.ymssp.2022.109170.
Hawla, D., Neishlos, H., Simulating curved beams via offset straight elements. Eng. Comput., 1985.
Valanis, K., A Theory of Viscoplasticity Without a Yield Surface. Part 1. General Theory: Tech. rep., 1970, IOWA Univ IOWA City Dept of Mechanics and Hydraulics.
Valanis, K.C., Fundamental Consequences of a New Intrinsic Time Measure. Plasticity As a Limit of the Endochronic Theory: Tech. rep., 1978, IOWA Univ IOWA City.
Nassar, S.A., Sun, T.S., Surface roughness effect on the torque-tension relationship in threaded fasteners. Proc. Inst. Mech. Eng. J 221:2 (2007), 95–103, 10.1243/13506501JET192.
Zou, Q., Sun, T.S., Nassar, S.A., Barber, G.C., Gumul, A.K., Effect of lubrication on friction and torque-tension relationship in threaded fasteners. Tribol. Trans. 50:1 (2007), 127–136, 10.1080/10402000601105490.
Bhattu, A., Hermann, S., Jamia, N., Müller, F., Scheel, M., Özgüven, H.N., Schwingshackl, C.W., Krack, M., Experimental analysis of the trc benchmark system. J. Struct. Dyn., 2024, 10.25518/2684-6500.206 Special issue on Tribomechadynamics.
Karaağaçlı, T., Özgüven, H.N., Experimental modal analysis of nonlinear systems by using response-controlled stepped-sine testing. Mech. Syst. Signal Process., 146, 2021, 107023, 10.1016/j.ymssp.2020.107023 URL http://www.sciencedirect.com/science/article/pii/S088832702030409X.
Abeloos, G., Müller, F., Ferhatoglu, E., Scheel, M., Collette, C., Kerschen, G., Brake, M.R.W., Tiso, P., Renson, L., Krack, M., A consistency analysis of phase-locked-loop testing and control-based continuation for a geometrically nonlinear frictional system. Mech. Syst. Signal Process., 170, 2022, 10.1016/j.ymssp.2022.108820.
Jewell, E., Allen, M.S., Zare, I., Wall, M., Application of quasi-static modal analysis to a finite element model and experimental correlation. J. Sound Vib., 479, 2020, 115376, 10.1016/j.jsv.2020.115376 URL http://www.sciencedirect.com/science/article/pii/S0022460X20302078.
Singh, Aabhas, Allen, Matthew S., Kuether, Robert J., Multi-mode quasi-static excitation for systems with nonlinear joints. Mech. Syst. Signal Process., 185(15 February), 2023, 109601 URL http://dx.doi.org/10.1016/j.ymssp.2022.109601.