Geothermal reservoir; Probabilistic models; Structural uncertainty; Uncertainty quantification; Discretizations; Dispersion coefficient; Model-based OPC; Probabilistics; Test designs; Tracer tests; Uncertainty quantifications; Renewable Energy, Sustainability and the Environment; Geotechnical Engineering and Engineering Geology; Geology
Abstract :
[en] Evaluation of underground processes requires numerical modeling based on sophisticated and reliable meshing. Our new GeoMeshPy library focuses on the discretization of probabilistic geological structures. This study presents a synthetic show-case for the capacity of this library to quantify the impact of structural uncertainty. In here, 50 models were developed taking advantage of the computational efficiency of GeoMeshPy. Assuming a geothermal doublet system embedded in a faulted reservoir with unclear structure, recovery time and magnitude of a tracer breakthrough was calculated. Even small angular variations up to ±15° in one of the faults yield differences of up to 26 and 30 percent for peak arrival time and magnitude, respectively. An additional inversion scheme of each of the 50 curves allows quantifying the impact on Péclet number varying from 3.4 to 4.3 due to structural variability. Analytically calculated dispersion coefficients are almost one order of magnitude higher than values used for simulations. Besides this mismatch, calculated dispersion coefficients are unable to represent the structural uncertainty (ranging from 125.6 to 129.4 m).
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Dashti, Ali; Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Gholami Korzani, Maziar; Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ; School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Australia
Geuzaine, Christophe ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Applied and Computational Electromagnetics (ACE)
Egert, Robert; Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Kohl, Thomas ; Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Language :
English
Title :
Impact of structural uncertainty on tracer test design in faulted geothermal reservoirs
Ali Dashti is receiving the financial support from The German Academic Exchange Service (Deutscher Akademischer Austauschdienst: DAAD) to do his PhD in Germany as the Research Grants- Doctoral programmes in Germany 2019/20. This organization is appreciated for giving the opportunity to researchers. The study is also part of the Helmholtz portfolio project Geoenergy. The support from the program “Renewable Energies", under the topic “Geothermal Energy Systems”, is gratefully acknowledged. Dr. Jacques Bodin is appreciated due to his help on using MFIT and informative comments.
Al-Khdheeawi, E.A., Vialle, S., Barifcani, A., Sarmadivaleh, M., Iglauer, S., Impact of reservoir wettability and heterogeneity on CO2 -plume migration and trapping capacity. Int. J. Greenh. Gas Control 58 (2017), 142–158.
Al-Maskeen, A.A., Ali, S.S., Khan, M., 2019. The impact of automated fault detection and extraction technology on seismic interpretation, in: day 2 Tue, March 19, 2019. SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain. 3/18/2019 - 3/21/2019. SPE.
An, Y., Guo, J., Ye, Q., Childs, C., Walsh, J., Dong, R., Deep convolutional neural network for automatic fault recognition from 3D seismic datasets. Comput. Geosci., 153, 2021, 104776.
Becker, M.W., Shapiro, A.M., Tracer transport in fractured crystalline rock: evidence of nondiffusive breakthrough tailing. Water Resour. Res. 36:7 (2000), 1677–1686.
Becker, M.W., Shapiro, A.M., Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock. Water Resour. Res., 39(1), 2003.
Bodin, J., MFIT 1.0.0: multi-flow inversion of tracer breakthrough curves in fractured and karst aquifers. Geosci. Model Dev. 13:6 (2020), 2905–2924.
Brooks, A.N., Hughes, T.J., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32:1–3 (1982), 199–259.
Caers, J., Modeling Uncertainty in the Earth Sciences. 2011, John Wiley & Sons, Ltd, Chichester, UK.
Cao, C., Xu, Z., Chai, J., Li, Y., Radial fluid flow regime in a single fracture under high hydraulic pressure during shear process. J. Hydrol., 579, 2019, 124142 (Amst).
Cao, V., Schaffer, M., Taherdangkoo, R., Licha, T., Solute reactive tracers for hydrogeological applications: a short review and future prospects. Water, 12(3), 2020, 653 (Basel).
Cox, S.F., 2020. Chapter 2: the dynamics of permeability enhancement and fluid flow in overpressured, fracture-controlled hydrothermal systems, in: Rowland, J.V., Rhys, D.A. (Eds.), Applied Structural Geology of Ore-forming Hydrothermal Systems. Society of Economic Geologists, pp. 25–82.
Cunha, A., Pochet, A., Lopes, H., Gattass, M., Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data. Comput. Geosci., 135, 2020, 104344.
Dezayes, C., Genter, A., Valley, B., Structure of the low permeable naturally fractured geothermal reservoir at Soultz. C.R. Geosci. 342:7–8 (2010), 517–530.
Egert, R., Korzani, M.G., Held, S., Kohl, T., Implications on large-scale flow of the fractured EGS reservoir Soultz inferred from hydraulic data and tracer experiments. Geothermics, 84, 2020, 101749.
Egert, R., Nitschke, F., Gholami Korzani, M., Kohl, T., Stochastic 3D navier-stokes flow in self-affine fracture geometries controlled by anisotropy and channeling. Geophys. Res. Lett., 48(9), 2021.
Erol, S., Bayer, P., Akın, T., Akın, S., Advanced workflow for multi-well tracer test analysis in a geothermal reservoir. Geothermics, 101, 2022, 102375.
Fairley, J.P., Hinds, J.J., Rapid transport pathways for geothermal fluids in an active Great Basin fault zone. Geol, 32(9), 2004, 825.
Faleide, T.S., Braathen, A., Lecomte, I., Mulrooney, M.J., Midtkandal, I., Bugge, A.J., Planke, S., Impacts of seismic resolution on fault interpretation: insights from seismic modelling. Tectonophysics, 816, 2021, 229008.
Fauziah, C.A., Al-Khdheeawi, E.A., Iglauer, S., Barifcani, A., Effect of clay minerals heterogeneity on wettability measurements: implications for CO2 storage. Proceedings of the Offshore Technology Conference Asia, 2020, OTC 11/2/2020 - 11/6/2020.
Flohr, A., Matter, J.M., James, R.H., Saw, K., Brown, R., Gros, J., Flude, S., Day, C., Peel, K., Connelly, D., Pearce, C.R., Strong, J.A., Lichtschlag, A., Hillegonds, D.J., Ballentine, C.J., Tyne, R.L., Utility of natural and artificial geochemical tracers for leakage monitoring and quantification during an offshore controlled CO2 release experiment. Int. J. Greenh. Gas Control, 111, 2021, 103421.
Gaston, D., Newman, C., Hansen, G., Lebrun-Grandié, D., MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239:10 (2009), 1768–1778.
Genter, A., Castaing, C., Dezayes, C., Tenzer, H., Traineau, H., Villemin, T., Comparative analysis of direct (core) and indirect (borehole imaging tools) collection of fracture data in the Hot Dry Rock Soultz reservoir (France). J. Geophys. Res. 102:B7 (1997), 15419–15431.
Gérard, A., Genter, A., Kohl, T., Lutz, P., Rose, P., Rummel, F., The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace, France). Geothermics 35:5–6 (2006), 473–483.
Geuzaine, C., Remacle, J.F., Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79:11 (2009), 1309–1331.
Gholami Korzani, M., Held, S., Kohl, T., Numerical based filtering concept for feasibility evaluation and reservoir performance enhancement of hydrothermal doublet systems. J. Pet. Sci. Eng., 190, 2020, 106803.
Hadgu, T., Karra, S., Kalinina, E., Makedonska, N., Hyman, J.D., Klise, K., Viswanathan, H.S., Wang, Y., A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock. J. Hydrol. 553 (2017), 59–70 (Amst).
Hauns, M., Jeannin, P.Y., Atteia, O., Dispersion, retardation and scale effect in tracer breakthrough curves in karst conduits. J. Hydrol. 241:3–4 (2001), 177–193 (Amst).
Held, S., Genter, A., Kohl, T., Kölbel, T., Sausse, J., Schoenball, M., Economic evaluation of geothermal reservoir performance through modeling the complexity of the operating EGS in Soultz-sous-Forêts. Geothermics 51 (2014), 270–280.
Ho-Le, K., Finite element mesh generation methods: a review and classification. Comput. Aided Des. 20:1 (1988), 27–38.
Hooijkaas, G.R., Genter, A., Dezayes, C., Deep-seated geology of the granite intrusions at the Soultz EGS site based on data from 5km-deep boreholes. Geothermics 35:5–6 (2006), 484–506.
Horne, R.N., Rodriguez, F., Dispersion in tracer flow in fractured geothermal systems. Geophys. Res. Lett. 10:4 (1983), 289–292.
Huysmans, M., Dassargues, A., Review of the use of Péclet numbers to determine the relative importance of advection and diffusion in low permeability environments. Hydrogeol. J. 13:5–6 (2005), 895–904.
Jenkins, C., Chadwick, A., Hovorka, S.D., The state of the art in monitoring and verification—ten years on. Int. J. Greenh. Gas Control 40 (2015), 312–349.
Karmakar, S., Ghergut, J., Sauter, M., Early-flowback tracer signals for fracture characterization in an EGS developed in deep crystalline and sedimentary formations: a parametric study. Geothermics 63 (2016), 242–252.
Kestin, J., Khalifa, E., Correia, R., Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150 C and the pressure range 0.1–35 MPa. J. Phys. Chem. Ref. Data, 1981.
Klein, E., Hardie, S.M.L., Kickmaier, W., McKinley, I.G., Testing repository safety assessment models for deep geological disposal using legacy contaminated sites. Sci. Total Environ., 776, 2021, 145949.
Kohl, T., Mégel, T., Predictive modeling of reservoir response to hydraulic stimulations at the European EGS site Soultz-sous-Forêts. Int. J. Rock Mech. Min. Sci. 44:8 (2007), 1118–1131.
Konrad, F., Savvatis, A., Degen, D., Wellmann, F., Einsiedl, F., Zosseder, K., Productivity enhancement of geothermal wells through fault zones: efficient numerical evaluation of a parameter space for the Upper Jurassic aquifer of the North Alpine Foreland Basin. Geothermics, 95, 2021, 102119.
Varga, La, de, M., Schaaf, A., Wellmann, F., GemPy 1.0: open-source stochastic geological modeling and inversion. Geosci. Model Dev. 12:1 (2019), 1–32.
Leibundgut, C., Seibert, J., Tracer hydrology. Treatise on Water Science, 2011, Elsevier, 215–236.
Li, L., Jiang, H., Wu, K., Li, J., Chen, Z., An analysis of tracer flowback profiles to reduce uncertainty in fracture-network geometries. J. Pet. Sci. Eng. 173 (2019), 246–257.
Li, X., Wen, Z., Zhan, H., Wu, F., Zhu, Q., Laboratory observations for two-dimensional solute transport in an aquifer-aquitard system. Environ. Sci. Pollut. Res. Int. 28:29 (2021), 38664–38678.
Lu, J., Cook, P.J., Hosseini, S.A., Yang, C., Romanak, K.D., Zhang, T., Freifeld, B.M., Smyth, R.C., Zeng, H., Hovorka, S.D., Complex fluid flow revealed by monitoring CO 2 injection in a fluvial formation. J. Geophys. Res., 117(B3), 2012.
Malik, D., Abidin, Z., Pramono, B., Tritium tracer Injection test at Wayang Windu Geothermal Field, West Java, Indonesia. Geothermics, 83, 2020, 101718.
Maloszewski, P., Zuber, A., Mathematical modeling of tracer behavior in short-term experiments in fissured rocks. Water Resour. Res. 26:7 (1990), 1517–1528.
Masud, A., Hughes, T.J., A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Eng. 191:39–40 (2002), 4341–4370.
Michie, E.A.H., Mulrooney, M.J., Braathen, A., 2021. Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO<sub>2</sub> storage.
Middleton, R.S., Carey, J.W., Currier, R.P., Hyman, J.D., Kang, Q., Karra, S., Jiménez-Martínez, J., Porter, M.L., Viswanathan, H.S., Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2. Appl. Energy 147 (2015), 500–509.
Okereke, M., Keates, S., Finite element mesh generation. Okereke, M., Keates, S., (eds.) Finite Element Applications. Springer Tracts in Mechanical Engineering, 2018, Springer International Publishing, Cham, 165–186.
Phillips, T., Kampman, N., Bisdom, K., Forbes Inskip, N.D., Hartog, S.A.D., Cnudde, V., Busch, A., Controls on the intrinsic flow properties of mudrock fractures: a review of their importance in subsurface storage. Earth Sci. Rev., 211, 2020, 103390.
Røe, P., Georgsen, F., Abrahamsen, P., An uncertainty model for fault shape and location. Math. Geosci. 46:8 (2014), 957–969.
Sanjuan, B., Pinault, J.L., Rose, P., Gérard, A., Brach, M., Braibant, G., Crouzet, C., Foucher, J.C., Gautier, A., Touzelet, S., Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005. Geothermics 35:5–6 (2006), 622–653.
Sausse, J., Dezayes, C., Dorbath, L., Genter, A., Place, J., 3D model of fracture zones at Soultz-sous-Forêts based on geological data, image logs, induced microseismicity and vertical seismic profiles. C.R. Geosci. 342:7-8 (2010), 531–545.
Schaaf, A., La Varga, M.D., Wellmann, F., Bond, C.E., 2020. Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation using GemPy 2.1.
Schmittbuhl, J., Steyer, A., Jouniaux, L., Toussaint, R., Fracture morphology and viscous transport. Int. J. Rock Mech. Min. Sci. 45:3 (2008), 422–430.
Siler, D.L., Pepin, J.D., 3-D Geologic Controls of Hydrothermal Fluid Flow at Brady geothermal field, Nevada, USA. Geothermics, 94, 2021, 102112.
Stamm, F.A., Varga, La, de, M., Wellmann, F., Actors, actions, and uncertainties: optimizing decision-making based on 3-D structural geological models. Solid Earth 10:6 (2019), 2015–2043.
Tenebe, I.T., Ogbiye, A.S., Omole, D.O., Emenike, P.C., Estimation of longitudinal dispersion co-efficient: a review. Cogent Eng., 3(1), 2016, 1216244.
Tonks, M.R., Gaston, D., Millett, P.C., Andrs, D., Talbot, P., An object-oriented finite element framework for multiphysics phase field simulations. Comput. Mater. Sci. 51:1 (2012), 20–29.
Toride, N., Leij, F.J., van Genuchten, M.T., A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production. Water Resour. Res. 29:7 (1993), 2167–2182.
Tsang, Y.W., Tsang, C.F., Hale, F.V., Dverstorp, B., Tracer transport in a stochastic continuum model of fractured media. Water Resour. Res. 32:10 (1996), 3077–3092.
van Genuchten, M.T., Å imunek, J, Leij, F.J, Toride, N., Å ejna, M. STANMOD: model use, calibration, and validation. Trans. ASABE 55:4 (2012), 1355–1368.
Wang, Z., Di, H., Shafiq, M.A., Alaudah, Y., AlRegib, G., Successful leveraging of image processing and machine learning in seismic structural interpretation: a review. Lead. Edge 37:6 (2018), 451–461.
Wellmann, J.F., Horowitz, F.G., Schill, E., Regenauer-Lieb, K., Towards incorporating uncertainty of structural data in 3D geological inversion. Tectonophysics 490:3–4 (2010), 141–151.
Wellmann, J.F., Regenauer-Lieb, K., Uncertainties have a meaning: information entropy as a quality measure for 3-D geological models. Tectonophysics 526-529 (2012), 207–216.
Yin, Z., Strebelle, S., Caers, J., Automated Monte Carlo-based quantification and updating of geological uncertainty with borehole data (AutoBEL v1.0). Geosci. Model. Dev. 13:2 (2020), 651–672.
Zhang, Q., Luo, S., Ma, H., Wang, X., Qian, J., Simulation on the water flow affected by the shape and density of roughness elements in a single rough fracture. J. lHydrol. 573 (2019), 456–468 (Amst).
Zhao, Z., Jing, L., Neretnieks, I., Evaluation of hydrodynamic dispersion parameters in fractured rocks. J. Rock Mech. Geotech. Eng. 2:3 (2010), 243–254.
Zhou, Q., Liu, H.H., Molz, F.J., Zhang, Y., Bodvarsson, G.S., Field-scale effective matrix diffusion coefficient for fractured rock: results from literature survey. J. Contam. Hydrol. 93:1–4 (2007), 161–187.