acoustic single-layer integral operator; high-frequency scattering; highly oscillatory integrals; steepest descent method; Acoustic single layers; Acoustic single-layer integral operator; Cauchy integral theorems; Frequency regimes; High frequency HF; High-frequency scattering; Highly oscillatory integrals; Integral operators; Steepest-descent method; Wave numbers; Mathematics (all); Computational Mathematics; Applied Mathematics
Abstract :
[en] Using the Cauchy integral theorem, we develop the application of the steepest descent method to efficiently compute the three-dimensional acoustic single-layer integral operator for large wave numbers. Explicit formulas for the splitting points are derived in the one-dimensional case to build suitable complex integration paths. The construction of admissible steepest descent paths is next investigated and some of their properties are stated. Based on these theoretical results, we derive the quadrature scheme of the oscillatory integrals first in dimension one and then extend the methodology to three-dimensional planar triangles. Numerical simulations are finally reported to illustrate the accuracy and efficiency of the proposed approach.
Disciplines :
Mathematics
Author, co-author :
Gasperini, D.; IEE S.A., Bissen, Luxembourg ; Université de Lorraine, CNRS, Inria, IECL, Nancy, France ; University of Liège, Liège, Belgium
Antoine, X. & Darbas, M. (2021) An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems. Multiscale Sci. Eng., 3, 1-35.
Asheim, A. (2008) A combined Filon/asymptotic quadrature method for highly oscillatory problems. BIT Numer. Math., 48, 425-448.
Asheim, A. (2013) Applying the numerical method of steepest descent on multivariate oscillatory integrals in scattering theory. arXiv:1302.1019
Asheim, A. (2014) A remedy for the failure of the numerical steepest descent method on a class of oscillatory integrals. BIT Numer. Math., 54, 587-605.
Asheim, A., Deaño, A., Huybrechs, D. & Wang, H. (2014) A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discr. Contin. Dynam. Syst. A, 34, 883-901.
Asheim, A. & Huybrechs, D. (2010) Asymptotic analysis of numerical steepest descent with path approximations. Found. Comput. Math., 10, 647-671.
Bruno, O. & Geuzaine, C. (2007) An o (1) integration scheme for three-dimensional surface scattering problems. J. Comput. Appl. Math., 204, 463-476.
Bruno, O., Geuzaine, C., Monro Jr, J. & Reitich, F. (2004) Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Philos. Trans. R. Soc. Lond. Ser. A, 362, 629-645.
Chandler-Wilde, S. N., Graham, I. G., Langdon, S. & Spence, E. A. (2012) Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer., 21, 89-305.
Chew, W. C., Michielssen, E., Song, J. M. & Jin, J. M. (2001) Fast and Efficient Algorithms in Computational Electromagnetics. Artech House.
Deaño, A., Huybrechs, D. & Iserles, A. (2017) Computing Highly Oscillatory Integrals, vol. 155. SIAM.
Folland, G. B. (1995) Introduction to Partial Differential Equations. Princeton University Press.
Ganesh, M., Langdon, S. & Sloan, I. H. (2007) Efficient evaluation of highly oscillatory acoustic scattering surface integrals. J. Comput. Appl. Math., 204, 363-374.
Gao, J. & Iserles, A. (2017a) A generalization of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals. BIT Numer. Math., 57, 943-961.
Gao, J. & Iserles, A. (2017b) Error analysis of the extended Filon-type method for highly oscillatory integrals. Res. Math. Scie., 4, 21.
Huybrechs, D. & Olver, S. (2009) Highly Oscillatory Quadrature, pp. 25-50. London Mathematical Society Lecture Note Series. Cambridge University Press. Edited by B. Engquist, A. Fokas, E. Hairer, A. Iserles.
Huybrechs, D. & Olver, S. (2012) Superinterpolation in highly oscillatory quadrature. Found. Comput. Math., 12, 203-228.
Huybrechs, D. & Vandewalle, S. (2006) On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal., 44, 1026-1048.
Huybrechs, D. & Vandewalle, S. (2007) The construction of cubature rules for multivariate highly oscillatory integrals. Math. Comp., 76, 1955-1981.
Iserles, A. & Nørsett, S. P. (2004) On quadrature methods for highly oscillatory integrals and their implementation. BIT Numer. Math., 44, 755-772.
Iserles, A. & Nørsett, S. P. (2005) Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. Lond. Ser. A, 461, 1383-1399.
Iserles, A. & Nørsett, S. P. (2006a) On the computation of highly oscillatory multivariate integrals with stationary points. BIT Numer. Math., 46, 549-566.
Iserles, A. & Nørsett, S. P. (2006b) Quadrature methods for multivariate highly oscillatory integrals using derivatives. Math. Comp., 46, 1233-1258.
Iserles, A. & Nørsett, S. P. (2009) From high oscillation to rapid approximation III: multivariate expansions. IMA J. Numer. Anal., 29, 882-916.
Levin, D. (1996) Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math., 67, 95-101.
Nédélec, J.-C. (2001) Acoustic and Electromagnetic Equations. Applied Mathematical Sciences, vol. 144. New York: Springer.
Wu, Y. M. & Chew, W. C. (2016) The modern high frequency methods for solving electromagnetic scattering problems. Prog. Electromagn. Res., 156, 63-82.
Wu, Y., Jiang, L. J. & Chew, W. C. (2012) An efficient method for computing highly oscillatory physical optics integral. Prog. Electromagn. Res., 127, 211-257.
Wu, Y. M., Jiang, L. J. & Chew, W. C. (2013a) Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method. J. Comput. Phys., 236, 408-425.
Wu, Y. M., Jiang, L. J., Wei, E. & Chew, W. C. (2013b) The numerical steepest descent path method for calculating physical optics integrals on smooth conducting quadratic surfaces. IEEE Trans. Antennas Propag., 61, 4183-4193.
Wu, Y. M. & Teng, S. J. (2016) Frequency-independent approach to calculate physical optics radiations with the quadratic concave phase variations. J. Comput. Phys., 324, 44-61.
Xiang, S. (2007) On the Filon and Levin methods for highly oscillatory integral. J. Comput. Appl. Math., 208, 434-439.
Zhang, J., Yu, W. M., Zhou, X. Y., & Cui, T. J. (2012) Efficient evaluation of the physical-optics integrals for conducting surfaces using the uniform stationary phase method. IEEE Trans. Antennas Propag., 60, 2398-2408.
Zhao, L. & Huang, C. (2017) An adaptive Filon-type method for oscillatory integrals without stationary points. Numer. Algorithms, 75, 753-775.