Non-linear eigenvalues; Physically agnostic algorithm; Quasi normal mode expansion; Resonances; Dispersive structures; Eigen-value; Hermitians; Non linear; Non-linear eigenvalue; Normal mode expansion; Normal modes; Time dispersive; Materials Science (all); Mechanics of Materials; Mechanical Engineering; Physics and Astronomy (all); Physics - Optics; Physics - Computational Physics; 65N25, 35B34, 78-10, 78A25, 78M10, 70J10, 74S05; G.1.8
Abstract :
[en] Resonances, also known as quasi normal modes (QNM) in the non-Hermitian case, play an ubiquitous role in all domains of physics ruled by wave phenomena, notably in continuum mechanics, acoustics, electrodynamics, and quantum theory. In this paper, we present a QNM expansion for dispersive systems, recently applied to photonics but based on sixty year old techniques in mechanics. The resulting numerical algorithm appears to be physically agnostic, that is independent of the considered physical problem and can therefore be implemented as a mere toolbox in a nonlinear eigenvalue computation library.
Disciplines :
Physics
Author, co-author :
Nicolet, André ; Aix Marseille University, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
Demésy, Guillaume; Aix Marseille University, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
Zolla, Frédéric; Aix Marseille University, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
Campos, Carmen ; Universitat de València, D. Didáctica de la Matemática, València, Spain
Roman, Jose E. ; Universitat Politècnica de València, D. Sistemes Informàtics i Computació, València, Spain
Geuzaine, Christophe ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Applied and Computational Electromagnetics (ACE)
Language :
English
Title :
Physically agnostic quasi normal mode expansion in time dispersive structures: From mechanical vibrations to nanophotonic resonances
Bai, Qiang, Perrin, Mathias, Sauvan, Christophe, Hugonin, Jean-Paul, Lalanne, Philippe, Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Opt. Express 21:22 (2013), 27371–27382.
Balslev, E., Combes, J.M., Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Comm. Math. Phys. 22:4 (1971), 280–294.
Berenger, J., A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys.(114), 1994, 185–200.
Beyn, Wolf-Jürgen, An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl. 436:10 (2012), 3839–3863.
Billah, K. Yusuf, Scanlan, Robert H., Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks. Amer. J. Phys. 59 (1991), 118–124.
Binkowski, Felix, Zschiedrich, Lin, Burger, Sven, A Riesz-projection-based method for nonlinear eigenvalue problems. J. Comput. Phys., 419, 2020, 109678.
Bonnet-BenDhia, A.-S., Hazard, C., Goursaud, B., Prieto, A., 2010. A multimodal method for non-uniform open waveguides. In: International Congress on Ultrasonics. Universidad de Santiago de Chile, pp. 497–503.
Brûlé, Yoann, Gralak, Boris, Demésy, Guillaume, Calculation and analysis of the complex band structure of dispersive and dissipative two-dimensional photonic crystals. J. Opt. Soc. Amer. B 33:4 (2016), 691–702.
Brun, Michele, Movchan, Alexander, Jones, Ian, McPhedran, Ross, Bypassing shake, rattle and roll. Phys. World 26:05 (2013), 32–36.
Campos, C., Roman, J.E., Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc. SIAM J. Sci. Comput. 38:5 (2016), S385–S411.
Campos, C., Roman, J.E., A polynomial Jacobi–Davidson solver with support for non-monomial bases and deflation. BIT 60:2 (2020), 295–318.
Campos, C., Roman, J.E., NEP: a module for the parallel solution of nonlinear eigenvalue problems in SLEPc. ACM Trans. Math. Softw. 47:3 (2021), 23:1–23:29.
Collin, Stéphane, Vincent, Grégory, Haïdar, Riad, Bardou, Nathalie, Rommeluère, Sylvain, Pelouard, Jean-Luc, Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane. Phys. Rev. Lett., 104(2), 2010, 027401.
Demésy, Guillaume, Nicolet, André, Gralak, Boris, Geuzaine, Christophe, Campos, Carmen, Roman, Jose E, Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures. Comput. Phys. Comm., 257, 2020, 107509.
Dillon, B., Webb, J., A comparison of formulations for the vector finite element analysis of waveguides. IEEE Trans. Microw. Theory Tech. 42:2 (1994), 308–316.
Doost, M.B., Resonant-state-expansion Born approximation with a correct eigen-mode normalisation. J. Opt., 18(8), 2016, 085607.
Doost, M.B., Resonant state expansion for transverse electric modes of two-dimensional open optical systems. 2017 arXiv preprint arXiv:1701.00807.
Doost, M.B., Langbein, W., Muljarov, E.A., Resonant-state expansion for a simple dispersive medium. 2015 arXiv preprint arXiv:1508.03851.
Dular, P., Geuzaine, C., Henrotte, F., Legros, W., A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Trans. Magn. 34:5 (1998), 3395–3398.
Engström, Christian, Langer, Heinz, Tretter, Christiane, Rational eigenvalue problems and applications to photonic crystals. J. Math. Anal. Appl. 445:1 (2017), 240–279.
baron Fourier, Jean Baptiste Joseph, Théorie Analytique de la Chaleur. 1822, Chez Firmin Didot, père et fils.
Garcia-Vergara, M., Demésy, G., Zolla, F., Extracting an accurate model for permittivity from experimental data: hunting complex poles from the real line. Opt. Lett. 42:6 (2017), 1145–1148.
Ge, Rong-Chun, Kristensen, Philip Trøst, Young, Jeff F., Hughes, Stephen, Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics. New J. Phys., 16(11), 2014, 113048.
Geuzaine, Christophe, Remacle, Jean-François, A three-dimensional finite element mesh generator with built-in pre-and post-processing facilities. Internat. J. Numer. Methods Engrg.(11), 2020, 79.
Gustavsen, B., Semlyen, A., Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 14:3 (1999), 1052–1061.
Hanson, George W., Yakovlev, Alexander B., Operator Theory for Electromagnetics: An Introduction. 2013, Springer Science & Business Media.
Hernandez, V., Roman, J.E., Vidal, V., SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software 31:3 (2005), 351–362.
Ho, P.L., Lu, Ya Yan, A mode-preserving perfectly matched layer for optical waveguides. IEEE Photonics Technol. Lett. 15:9 (2003), 1234–1236.
Keldysh, Mstislav Vsevolodovich, On eigenvalues and eigenfunctions of some classes of non-self-adjoint equations. Dokl. Akad. Nauk SSSR, 77, 1951, 11–14.
Keldysh, Mstislav Vsevolodovich, On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators. Russian Math. Surveys 26:4 (1971), 15–44.
Kozlov, Vladimir, Maz'ya, Vladimir, Differential Equations with Operator Coefficients: With Applications To Boundary Value Problems for Partial Differential Equations. 1999, Springer.
Lalanne, P., Yan, W., Gras, A., Sauvan, C., Hugonin, J.-P., Besbes, M., Demésy, G., Truong, M.D., Gralak, B., Zolla, F., Nicolet, A., Binkowski, F., Zschiedrich, L., Burger, S., Zimmerling, J., Remis, R., Urbach, P., Liu, H.T., Weiss, T., Quasinormal mode solvers for resonators with dispersive materials. J. Opt. Soc. Amer. A 36:4 (2019), 686–704.
Lancaster, P., Inversion of lambda-matrices and application to the theory of linear vibrations. Arch. Ration. Mech. Anal. 6:1 (1960), 105–114.
Lancaster, P., Lambda-Matrices and Vibrating Systems. 1966, Pergamon Press.
Lancaster, Peter, Tismenetsky, Miron, The Theory of Matrices: With Applications. 1985, Elsevier.
Laux, Steven E., Solving complex band structure problems with the FEAST eigenvalue algorithm. Phys. Rev. B, 86(7), 2012, 075103.
Leung, P.T., Liu, S.Y., Young, K., Completeness and time-independent perturbation of the quasinormal modes of an absorptive and leaky cavity. Phys. Rev. A, 49(5), 1994, 3982.
Lucarini, Valerio, Saarinen, Jarkko J., Peiponen, Kai-Erik, Vartiainen, Erik M., Kramers-Kronig relations in optical materials research. 2005, Springer.
Movchan, Natalia V., Movchan, Alexander B., McPhedran, Ross C., Brun, Michele, Jones, Ian S., Metamaterial systems and routing of elastic waves in engineered structures. UK Success Stories in Industrial Mathematics, 2016, Springer, 107–113.
Muljarov, E.A., Langbein, W., Resonant-state expansion of dispersive open optical systems: Creating gold from sand. Phys. Rev. B, 93(7), 2016, 075417.
Ould Agha, Yacoub, Zolla, Frédéric, Nicolet, André, Guenneau, Sébastien, On the use of PML for the computation of leaky modes: an application to gradient index MOF. COMPEL 27:1 (2008), 95–109.
Perrin, Mathias, Eigen-energy effects and non-orthogonality in the quasi-normal mode expansion of maxwell equations. Opt. Express 24:24 (2016), 27137–27151.
Sauvan, Christophe, Hugonin, Jean-Paul, Maksymov, I.S., Lalanne, Philippe, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett., 110(23), 2013, 237401.
Spence, Alastair, Poulton, Chris, Photonic band structure calculations using nonlinear eigenvalue techniques. J. Comput. Phys. 204:1 (2005), 65–81.
Truong, Minh Duy, Nicolet, André, Demésy, Guillaume, Zolla, Frédéric, Continuous family of exact Dispersive Quasi-Normal Modal (DQNM) expansions for dispersive photonic structures. Opt. Express 28:20 (2020), 29016–29032.
Unger, Gerhard, Convergence orders of iterative methods for nonlinear eigenvalue problems. Advanced Finite Element Methods and Applications, 2013, Springer, 217–237.