Jupiter; magnetosphere; magnetospheric dynamics; ultraviolet aurora; X-ray aurora; Geophysics; Space and Planetary Science
Abstract :
[en] We define the spatial clustering of X-rays within Jupiter's northern auroral regions by classifying their distributions into “X-ray auroral structures.” Using data from Chandra during Juno's main mission observations (24 May 2016 to 8 September 2019), we define five X-ray structures based on their ionospheric location and calculate the distribution of auroral photons. The morphology and ionospheric location of these structures allow us to explore the possibility of numerous X-ray auroral magnetospheric drivers. We compare these distributions to Hubble Space Telescope (HST) and Juno (Waves and MAG) data, and a 1D solar wind propagation model to infer the state of Jupiter's magnetosphere. Our results suggest that the five sub-classes of “X-ray structures” fall under two broad morphologies: fully polar and low latitude emissions. Visibility modeling of each structure suggests the non-uniformity of the photon distributions across the Chandra intervals are likely associated with the switching on/off of magnetospheric drivers as opposed to geometrical effects. The combination of ultraviolet (UV) and X-ray morphological structures is a powerful tool to elucidate the behavior of both electrons and ions and their link to solar wind/magnetospheric conditions in the absence of an upstream solar monitor. Although much work is still needed to progress the use of X-ray morphology as a diagnostic tool, we set the foundations for future studies to continue this vital research.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Weigt, D.M. ; School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom ; School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin, Ireland ; School of Physics, Trinity College Dublin, Dublin, Ireland
Jackman, C.M. ; School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin, Ireland
Moral Pombo, D. ; Department of Physics, Lancaster University, Lancaster, United Kingdom
Badman, S.V. ; Department of Physics, Lancaster University, Lancaster, United Kingdom
Louis, C.K. ; School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin, Ireland
Dunn, W.R. ; Department of Physics and Astronomy, University College London, London, United Kingdom
McEntee, S.C. ; School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin, Ireland ; School of Physics, Trinity College Dublin, Dublin, Ireland
Branduardi-Raymont, G. ; Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Vogt, M.F. ; Center for Space Physics, Boston University, Boston, United States
Tao, C. ; National Institute of Information and Communications Technology, Tokyo, Japan
Gladstone, G.R. ; Southwest Research Institute, San Antonio, United States
Kraft, R.P.; Harvard-Smithsonian Center for Astrophysics, Smithsonian Astrophysical Observatory, Cambridge, United States
Kurth, W.S. ; Department of Physics and Astronomy, University of Iowa, Iowa City, United States
Connerney, J.E.P. ; Space Research Corporation, Annapolis, United States ; NASA Goddard Space Flight Center, Greenbelt, United States
STFC - Science and Technology Facilities Council ESA - European Space Agency AFOSR - Air Force Office of Scientific Research SFI - Science Foundation Ireland JSPS - Japan Society for the Promotion of Science NASA - National Aeronautics and Space Administration
Funding text :
DMW is supported by the Science and Technology Facilities Council (STFC) studentship ST/S505705/1 and long term attachment grant to work at the Dublin Institute for Advanced Studies (DIAS). DMW's work at DIAS is funded by European Union's Horizon 2020 research and innovation programme under grant agreement No. 952439 and project number AO 2‐1927/22/NL/GLC/ov as part of the ESA OSIP Nanosats for Spaceweather Campaign. DMW's work at Trinity College Dublin is supported by Air Force Office of Scientific Research award FA9550‐19‐1‐7010. DMP is supported by a LUFST studentship. SVB is supported by STFC projects ST/M005534/1 and ST/V000748/1. CMJ, CKL and SCMcE work at DIAS is supported by the Science Foundation Ireland (SFI) Grant 18/FRL/6199. WRD was supported by Ernest Rutherford Fellowship: ST/W003449/1. MFV was supported by NASA Grant 80NSSC20K0559. CT acknowledges support by JSPS KAKENHI 20KK0074. The research at the University of Iowa is supported by NASA through Contract 699041X with Southwest Research Institute.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Badman, S. V., Branduardi-Raymont, G., Galand, M., Hess, S. L. G., Krupp, N., Lamy, L., et al. (2015). Auroral processes at the giant planets: Energy deposition, emission mechanisms, morphology and spectra. Space Science Reviews, 187(1–4), 99–179. https://doi.org/10.1007/s11214-014-0042-x
Ballester, G. E., Clarke, J. T., Trauger, J. T., Harris, W. M., Stapelfeldt, K. R., Crisp, D., et al. (1996). Time-resolved observations of Jupiter's far-ultraviolet aurora. Science, 274(5286), 409–413. https://doi.org/10.1126/science.274.5286.409
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., et al. (2017). The Juno Mission. Space Science Reviews, 213(1–4), 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., et al. (2017). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122(8), 7985–7996. https://doi.org/10.1002/2017JA024370
Bonfond, B., Yao, Z. H., Gladstone, G. R., Grodent, D., Gérard, J., Matar, J., et al. (2021). Are dawn storms Jupiter's auroral substorms? AGU Advances, 2(1), 1–14. https://doi.org/10.1029/2020av000275
Branduardi-Raymont, G., Elsner, R. F., Galand, M., Grodent, D., Cravens, T. E., Ford, P., et al. (2008). Spectral morphology of the X-ray emission from Jupiter's aurorae. Journal of Geophysical Research, 113(2), 1–11. https://doi.org/10.1029/2007JA012600
Branduardi-Raymont, G., Elsner, R. F., Gladstone, G. R., Ramsay, G., Rodriguez, P., Soria, R., & Waite, J. H. (2004). First observation of Jupiter by XMM-Newton. Astronomy, 337(1149), 331–337. https://doi.org/10.1051/0004-6361
Bunce, E. J., Cowley, S. W., & Yeoman, T. K. (2004). Jovian cusp processes: Implications for the polar aurora. Journal of Geophysical Research, 109(A9), 1–26. https://doi.org/10.1029/2003JA010280
Collier, M. R., Gruesbeck, J. R., Connerney, J. E. P., Joy, S. P., Hospodarsky, G. B., Roberts, A., et al. (2020). A K-means clustering analysis of the Jovian and terrestrial magnetopauses: A technique to classify global magnetospheric behavior. Journal of Geophysical Research: Planets, 125(9), e06366. https://doi.org/10.1029/2019JE006366
Connerney, J. E. P. (2017). Juno fluxgate magnetometer calibrated data v1.0 [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1519711
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., et al. (2017). The Juno magnetic field investigation. Space Science Reviews, 213(1–4), 39–138. https://doi.org/10.1007/s11214-017-0334-z
Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc model for the Juno era. Journal of Geophysical Research: Space Physics, 125(10), e2020JA028138. https://doi.org/10.1029/2020JA028138
Connerney, J. E. P., Timmins, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Kotsiaros, S., et al. (2022). A new model of Jupiter's magnetic field at the completion of Juno's Prime Mission. Journal of Geophysical Research: Planets, 127(2), e2021JE007055. https://doi.org/10.1029/2021JE007055
Cravens, T. E., Waite, J. H., Gombosi, T. I., Lugaz, N., Gladstone, G. R., Mauk, B. H., & MacDowall, R. J. (2003). Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. Journal of Geophysical Research, 108(A12), 1–12. https://doi.org/10.1029/2003JA010050
Dumont, M., Grodent, D., Radioti, A., Bonfond, B., & Gérard, J. (2014). Jupiter's equatorward auroral features: Possible signatures of magnetospheric injections. Journal of Geophysical Research: Space Physics, 119(12), A07000. https://doi.org/10.1002/2014JA020527
Dumont, M., Grodent, D., Radioti, A., Bonfond, B., Roussos, E., & Paranicas, C. (2018). Evolution of the auroral signatures of Jupiter's magnetospheric injections. Journal of Geophysical Research: Space Physics, 123(2015), 1–13. https://doi.org/10.1029/2018JA025708
Dunn, W. R. (2022). X-ray emissions from the Jovian system. In C. Bambi & A. Santangelo (Eds.), Handbook of x-ray and gamma-ray astrophysics (p. 110). https://doi.org/10.1007/978-981-16-4544-0_73-1
Dunn, W. R., Berland, G., Roussos, E., Clark, G., Kollmann, P., Turner, D., et al. (2023). Exploring fundamental particle acceleration and loss processes in heliophysics through an orbiting X-ray instrument in the Jovian system. arXiv e-prints. arXiv:2303.02161. https://doi.org/10.48550/arXiv.2303.02161
Dunn, W. R., Branduardi-Raymont, G., Carter-Cortez, V., Campbell, A., Elsner, R., Ness, J.-U., et al. (2020a). Jupiter's X-ray emission during the 2007 solar minimum. Journal of Geophysical Research: Space Physics, 125(6), e2019JA027219. https://doi.org/10.1029/2019JA027219
Dunn, W. R., Branduardi-Raymont, G., Elsner, R. F., Vogt, M. F., Lamy, L., Ford, P. G., et al. (2016). The impact of an ICME on the Jovian X-ray aurora. Journal of Geophysical Research A: Space Physics, 121(3), 2274–2307. https://doi.org/10.1002/2015JA021888
Dunn, W. R., Branduardi-Raymont, G., Ray, L. C., Jackman, C. M., Kraft, R. P., Elsner, R. F., et al. (2017). The independent pulsations of Jupiter's northern and southern X-ray auroras. Nature Astronomy, 1(11), 758–764. https://doi.org/10.1038/s41550-017-0262-6
Dunn, W. R., Gray, R., Wibisono, A. D., Lamy, L., Louis, C., Badman, S. V., et al. (2020b). Comparisons between Jupiter's X-ray, UV and radio emissions and in-situ solar wind measurements during 2007. Journal of Geophysical Research: Space Physics, 125(6), e2019JA027222. https://doi.org/10.1029/2019JA027222
Dunn, W. R., Weigt, D. M., Grodent, D., Yao, Z. H., May, D., Feigelman, K., et al. (2022). Jupiter's X-ray and UV dark polar region. Geophysical Research Letters, 4(11), e2021GL097390. https://doi.org/10.1029/2021GL097390
Elsner, R. F., Lugaz, N., Waite, J. H., Cravens, T. E., Gladstone, G. R., Ford, P., et al. (2005). Simultaneous Chandra X ray Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter's aurora. Journal of Geophysical Research, 110(A1), 1–16. https://doi.org/10.1029/2004JA010717
Falcone, A. D., Kraft, R. P., Bautz, M. W., Gaskin, J. A., Mulqueen, J. A., & Swartz, D. A. (2019). Overview of the high-definition x-ray imager instrument on the Lynx x-ray surveyor. Journal of Astronomical Telescopes, Instruments, and Systems, 5(2), 1. https://doi.org/10.1117/1.JATIS.5.2.021019
Feng, E., Zhang, B., Yao, Z., Delamere, P. A., Zheng, Z., Brambles, O. J., et al. (2022). Dynamic Jovian magnetosphere responses to enhanced solar wind ram pressure: Implications for auroral activities. Geophysical Research Letters, 49(19), e2022GL099858. https://doi.org/10.1029/2022GL099858
Gerard, J. C., Grodent, D., Prange, R., Waite, J. H., Gladstone, G. R., Dols, V., et al. (1994). A remarkable auroral event on Jupiter observed in the ultraviolet with the Hubble Space Telescope. Science, 266(5191), 1675–1678. https://doi.org/10.1126/science.266.5191.1675
Gray, R. L., Badman, S. V., Bonfond, B., Kimura, T., Misawa, H., Nichols, J. D., et al. (2016). Auroral evidence of radial transport at Jupiter during January 2014. Journal of Geophysical Research: Space Physics, 121(10), 9972–9984. https://doi.org/10.1002/2016JA023007
Greathouse, T., Gladstone, R., Versteeg, M., Hue, V., Kammer, J., Giles, R., et al. (2021). Local time dependence of Jupiter's polar auroral emissions observed by Juno UVS. Journal of Geophysical Research: Planets, 126(12), 1–13. https://doi.org/10.1029/2021JE006954
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187(1–4), 23–50. https://doi.org/10.1007/s11214-014-0052-8
Grodent, D., Bonfond, B., Yao, Z., Gérard, J. C., Radioti, A., Dumont, M., et al. (2018). Jupiter's aurora observed with HST during Juno orbits 3 to 7. Journal of Geophysical Research: Space Physics, 123(5), 3299–3319. https://doi.org/10.1002/2017JA025046
Grodent, D., Clarke, J. T., Kim, J., Waite, J. H., & Cowley, S. W. H. (2003). Jupiter's main auroral oval observed with HST-STIS. Journal of Geophysical Research, 108(A11), 1389. https://doi.org/10.1029/2003JA009921
Grodent, D., Clarke, J. T., Waite, J. H., Cowley, S. W., Gérard, J. C., & Kim, J. (2003). Jupiter's polar auroral emissions. Journal of Geophysical Research, 108(A10), 1–9. https://doi.org/10.1029/2003JA010017
Guo, R. L., Yao, Z. H., Sergis, N., Wei, Y., Mitchell, D., Roussos, E., et al. (2018). Reconnection acceleration in Saturn's dayside magnetodisk: A multicase study with Cassini. The Astrophysical Journal, 868(2), L23. https://doi.org/10.3847/2041-8213/aaedab
Gurnett, D. A., & Scarf, F. L. (1983). Plasma waves in the Jovian magnetosphere. In A. J. Dessler (Ed.), Physics of the Jovian magnetosphere (pp. 285–316). Cambridge University Press. https://doi.org/10.1017/CBO9780511564574.010
Hospodarsky, G. B., Kurth, W. S., Bolton, S. J., Allegrini, F., Clark, G. B., Connerney, J. E., et al. (2017). Jovian bow shock and magnetopause encounters by the Juno spacecraft. Geophysical Research Letters, 44(10), 4506–4512. https://doi.org/10.1002/2017GL073177
Houston, S. J., Cravens, T. E., Schultz, D. R., Gharibnejad, H., Dunn, W. R., Haggerty, D. K., et al. (2020). Jovian auroral ion precipitation: X-ray production from oxygen and sulfur precipitation. Journal of Geophysical Research: Space Physics, 125(2), 2019JA027007. https://doi.org/10.1029/2019JA027007
Huscher, E., Bagenal, F., Wilson, R. J., Allegrini, F., Ebert, R. W., Valek, P. W., et al. (2021). Survey of Juno observations in Jupiter's plasma disk: Density. Journal of Geophysical Research: Space Physics, 126(8), e29446. https://doi.org/10.1029/2021JA029446
Jackman, C. M., & Arridge, C. S. (2011). Solar cycle effects on the dynamics of Jupiter's and Saturn's magnetospheres. Solar Physics, 274(1–2), 481–502. https://doi.org/10.1007/s11207-011-9748-z
Jackman, C. M., Knigge, C., Altamirano, D., Gladstone, R., Dunn, W., Elsner, R., et al. (2018). Assessing quasi-periodicities in Jovian X-ray emissions: Techniques and heritage survey. Journal of Geophysical Research: Space Physics, 123(11), 9204–9221. https://doi.org/10.1029/2018JA025490
Joy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., Russell, C. T., & Ogino, T. (2002). Probabilistic models of the Jovian magnetopause and bow shock locations. Journal of Geophysical Research, 107(A10), 1–17. https://doi.org/10.1029/2001JA009146
Kasahara, S., Kronberg, E. A., Kimura, T., Tao, C., Badman, S. V., Masters, A., et al. (2013). Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere. Journal of Geophysical Research: Space Physics, 118(1), 375–384. https://doi.org/10.1029/2012JA018130
Kimura, T., Nichols, J. D., Gray, R. L., Tao, C., Murakami, G., Yamazaki, A., et al. (2017). Transient brightening of Jupiter's aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft. Geophysical Research Letters, 44(10), 4523–4531. https://doi.org/10.1002/2017GL072912
Kotsiaros, S., Connerney, J. E., Clark, G., Allegrini, F., Gladstone, G. R., Kurth, W. S., et al. (2019). Birkeland currents in Jupiter's magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 3(10), 904–909. https://doi.org/10.1038/s41550-019-0819-7
Kraft, R., Markevitch, M., Kilbourne, C., Adams, J. S., Akamatsu, H., Ayromlou, M., et al. (2022). Line Emission Mapper (LEM): Probing the physics of cosmic ecosystems. arXiv e-prints. arXiv:2211.09827. https://doi.org/10.48550/arXiv.2211.09827
Kronberg, E. A., Woch, J., Krupp, N., Lagg, A., Khurana, K. K., & Glassmeier, K. H. (2005). Mass release at Jupiter: Substorm-like processes in the Jovian magnetotail. Journal of Geophysical Research, 110(A3), A03211. https://doi.org/10.1029/2004JA010777
Kurth, W. S., Hospodarsky, G. B., Kirchner, D. L., Mokrzycki, B. T., Averkamp, T. F., Robison, W. T., et al. (2017). The Juno waves investigation. Space Science Reviews, 213(1–4), 347–392. https://doi.org/10.1007/s11214-017-0396-y
Kurth, W. S., & Piker, C. W. (2022). Juno waves calibrated survey full resolution v2.0 [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1520498
Louarn, P., Paranicas, C. P., & Kurth, W. S. (2014). Global magnetodisk disturbances and energetic particle injections at Jupiter. Journal of Geophysical Research: Space Physics, 119(6), 4495–4511. https://doi.org/10.1002/2014JA019846
Louarn, P., Roux, A., Perraut, S., Kurth, W., & Gurnett, D. (1998). A study of the large-scale dynamics of the Jovian magnetosphere using the Galileo plasma wave experiment. Geophysical Research Letters, 25(15), 2905–2908. https://doi.org/10.1029/98GL01774
Louis, C. K., Jackman, C. M., Hospodarsky, G., O'Kane Hackett, A., Devon-Hurley, E., Zarka, P., et al. (2023). Effect of a magnetospheric compression on Jovian radio emissions: In situ case study using Juno data. Journal of Geophysical Research: Space Physics, 128(9), e2022JA031155. https://doi.org/10.1029/2022JA031155
Manners, H., & Masters, A. (2020). The global distribution of ultra-low-frequency waves in Jupiter's magnetosphere. Journal of Geophysical Research: Space Physics, 125(10), e2020JA028345. https://doi.org/10.1029/2020JA028345
McComas, D. J., Szalay, J. R., Allegrini, F., Bagenal, F., Connerney, J., Ebert, R. W., et al. (2017). Plasma environment at the dawn flank of Jupiter's magnetosphere: Juno arrives at Jupiter. Geophysical Research Letters, 44(10), 4432–4438. https://doi.org/10.1002/2017GL072831
McEntee, S. C., Jackman, C. M., Weigt, D. M., Dunn, W. R., Kashyap, V., Kraft, R., et al. (2022). Comparing Jupiter's equatorial x-ray emissions with solar x-ray flux over 19 years of the Chandra mission. Journal of Geophysical Research: Space Physics, 127(12), e2022JA030971. https://doi.org/10.1029/2022JA030971
Mori, K., Hailey, C., Bridges, G., Mandel, S., Garvin, A., Grefenstette, B., et al. (2022). Observation and origin of non-thermal hard X-rays from Jupiter. Nature Astronomy, 6(4), 442–448. https://doi.org/10.1038/s41550-021-01594-8
Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643–7652. https://doi.org/10.1002/2017GL073029
Nichols, J. D., Clarke, J. T., Gérard, J. C., Grodent, D., & Hansen, K. C. (2009). Variation of different components of Jupiter's auroral emission. Journal of Geophysical Research, 114(6), 1–18. https://doi.org/10.1029/2009JA014051
Nulsen, S., Kraft, R., Germain, G., Dunn, W., Tremblay, G., Beegle, L., et al. (2020). X-ray emission from Jupiter's Galilean moons: A tool for determining their surface composition and particle environment. The Astrophysical Journal, 895(2), 79. https://doi.org/10.3847/1538-4357/ab8cbc
Pallier, L., & Prangé, R. (2001). More about the structure of the high latitude Jovian aurorae. Planetary and Space Science, 49(10–11), 1159–1173. https://doi.org/10.1016/S0032-0633(01)00023-X
Radioti, A., Grodent, D., GéRard, J. C., Vogt, M. F., Lystrup, M., & Bonfond, B. (2011). Nightside reconnection at Jupiter: Auroral and magnetic field observations from 26 July 1998. Journal of Geophysical Research, 116(A3), A03221. https://doi.org/10.1029/2010JA016200
Russell, C. T., Khurana, K. K., Huddleston, D. E., & Kivelson, M. G. (1998). Localized reconnection in the near Jovian magnetotail. Science, 280(5366), 1061–1064. https://doi.org/10.1126/science.280.5366.1061
Swithenbank-Harris, B. G., Nichols, J. D., & Bunce, E. J. (2019). Jupiter's Dark Polar Region as observed by the Hubble Space Telescope during the Juno approach phase. Journal of Geophysical Research: Space Physics, 124(11), 9094–9105. https://doi.org/10.1029/2019JA027306
Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y., & Yokoyama, T. (2005). Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. Journal of Geophysical Research, 110(A11), 1–9. https://doi.org/10.1029/2004JA010959
Vasyliūnas, V. M. (1983). Plasma distribution and flow. In A. J. Dessler (Ed.), Physics of the Jovian magnetosphere (pp. 395–453). Cambridge University Press. https://doi.org/10.1017/CBO9780511564574.013
Vogt, M. F., Bunce, E. J., Kivelson, M. G., Khurana, K. K., Walker, R. J., Radioti, A., et al. (2015). Magnetosphere-ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models. Journal of Geophysical Research: Space Physics, 120(4), 2584–2599. https://doi.org/10.1002/2014JA020729
Vogt, M. F., Jackman, C. M., Slavin, J. A., Bunce, E. J., Cowley, S. W. H., Kivelson, M. G., & Khurana, K. K. (2014). Structure and statistical properties of plasmoids in Jupiter's magnetotail. Journal of Geophysical Research: Space Physics, 119(2), 821–843. https://doi.org/10.1002/2013JA019607.Received
Vogt, M. F., Kivelson, M. G., Khurana, K. K., Joy, S. P., & Walker, R. J. (2010). Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. Journal of Geophysical Research, 115(A6), A06219. https://doi.org/10.1029/2009JA015098
Vogt, M. F., Kivelson, M. G., Khurana, K. K., Walker, R. J., Bonfond, B., Grodent, D., & Radioti, A. (2011). Improved mapping of Jupiter's auroral features to magnetospheric sources. Journal of Geophysical Research, 116(3), A03220. https://doi.org/10.1029/2010JA016148
Vogt, M. F., Rutala, M., Bonfond, B., Clarke, J. T., Moore, L., & Nichols, J. D. (2022). Variability of Jupiter's main auroral emission and satellite footprints observed with HST during the Galileo era. Journal of Geophysical Research: Space Physics, 127(2), e2021JA030011. https://doi.org/10.1029/2021JA030011
Weigt, D. M., Dunn, W. R., Jackman, C. M., Kraft, R., Branduardi-Raymont, G., Nichols, J. D., et al. (2021a). Searching for Saturn's X-rays during a rare Jupiter magnetotail crossing using Chandra. Monthly Notices of the Royal Astronomical Society, 506(1), 298–305. https://doi.org/10.1093/mnras/stab1680
Weigt, D. M., Gladstone, G. R., McEntee, S. C., Dunn, W. R., Kashyap, V. L., Jackman, C. M., et al. (2022). Chandra_x-ray_data_processing_pipeline version 1.0.2 (v1.0.2) [Computer Software]. Zenodo. https://doi.org/10.5281/zenodo.7380282
Weigt, D. M., Jackman, C. M., Dunn, W. R., Gladstone, G. R., Vogt, M. F., Wibisono, A. D., et al. (2020). Chandra observations of Jupiter's X-ray auroral emission during Juno apojove 2017. Journal of Geophysical Research: Planets, 125(4), e2019JE006262. https://doi.org/10.1029/2019JE006262
Weigt, D. M., Jackman, C. M., Moral Pombo, D., Badman, S. V., Louis, C. K., Dunn, W. R., et al. (2023). Identifying the variety of Jovian X-ray auroral structures: Tying the morphology of X-ray emissions to associated magnetospheric dynamics [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.8375516
Weigt, D. M., Jackman, C. M., Vogt, M. F., Manners, H., Dunn, W. R., Gladstone, G. R., et al. (2021b). Characteristics of Jupiter's X-ray auroral hot spot emissions using Chandra [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.4275744
Weigt, D. M., Jackman, C. M., Vogt, M. F., Manners, H., Dunn, W. R., Gladstone, G. R., et al. (2021c). Characteristics of Jupiter's X-Ray auroral hot spot emissions using Chandra. Journal of Geophysical Research: Space Physics, 126(9), e2021JA029243. https://doi.org/10.1029/2021JA029243
Weisskopf, M. C., Tananbaum, H. D., Van Speybroeck, L. P., & O'Dell, S. L. (2000). Chandra X-ray observatory (CXO): Overview. X-Ray Optics, Instruments, and Missions III, 4012(July 2000), 2–16. https://doi.org/10.1117/12.391545
Wibisono, A. D., Branduardi-Raymont, G., Dunn, W. R., Kimura, T., Coates, A. J., Grodent, D., et al. (2021). Jupiter's X-ray aurora during UV dawn storms and injections as observed by XMM-Newton, Hubble, and Hisaki. Monthly Notices of the Royal Astronomical Society, 507(1), 1216–1228. https://doi.org/10.1093/mnras/stab2218
Yao, Z., Bonfond, B., Clark, G., Grodent, D., Dunn, W., Vogt, M., et al. (2020). Reconnection- and dipolarization-driven auroral dawn storms and injections. Journal of Geophysical Research: Space Physics, 125(8), e2019JA027663. https://doi.org/10.1029/2019JA027663
Yao, Z., Bonfond, B., Grodent, D., Chané, E., Dunn, W. R., Kurth, W. S., et al. (2022). On the relation between auroral morphologies and compression conditions of Jupiter's magnetopause: Observations from Juno and the Hubble Space Telescope. Journal of Geophysical Research: Space Physics, 127(10), e2021JA029894. https://doi.org/10.1029/2021JA029894
Yao, Z., Dunn, W., Woodfield, E., Clark, G., Mauk, B., Ebert, R., et al. (2021). Revealing the source of Jupiter's x-ray auroral flares. Science Advances, 7(28), eabf0851. https://doi.org/10.1126/sciadv.abf0851
Yoshioka, K., Murakami, G., Yamazaki, A., Tsuchiya, F., Kagitani, M., Sakanoi, T., et al. (2013). The extreme ultraviolet spectroscope for planetary science, EXCEED. Planetary and Space Science, 85, 250–260. https://doi.org/10.1016/j.pss.2013.06.021
Zarka, P., Magalhães, F. P., Marques, M. S., Louis, C. K., Echer, E., Lamy, L., et al. (2021). Jupiter's auroral radio emissions observed by Cassini: Rotational versus solar wind control, and components identification. Journal of Geophysical Research: Space Physics, 126(10), e29780. https://doi.org/10.1029/2021JA029780
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.