Impact of COVID-19 on thrombus composition and response to thrombolysis: Insights from a monocentric cohort population of COVID-19 patients with acute ischemic stroke.
Desilles, Jean-Philippe; Solo Nomenjanahary, Mialitiana; Consoli, Arturoet al.
2022 • In Journal of Thrombosis and Haemostasis, 20 (4), p. 919 - 928
[en] [en] BACKGROUND: Resistance to fibrinolysis, levels of procoagulant/antifibrinolytic neutrophil extracellular traps (NETs), and the severity of acute ischemic stroke (AIS) are increased by COVID-19. Whether NETs are components of AIS thrombi from COVID-19 patients and whether COVID-19 impacts the susceptibility of these thrombi to thrombolytic treatments remain unknown, however.
OBJECTIVES: We aimed to characterize AIS thrombi from COVID-19 patients by immunohistology and to compare their response to thrombolysis to that of AIS thrombi from non-COVID-19 patients.
PATIENTS/METHODS: For this monocentric cohort study, 14 thrombi from COVID-19 AIS patients and 16 thrombi from non-COVID-19 patients, all recovered by endovascular therapy, were analyzed by immunohistology or subjected to ex vivo thrombolysis by tissue-type plasminogen (tPA)/plasminogen.
RESULTS: COVID-19 AIS thrombi were rich in neutrophils and contained NETs, but not spike protein. Thrombolysis assays revealed a mean resistance profile to tPA/plasminogen of COVID-19 AIS thrombi similar to that of non-COVID-19 AIS thrombi. The addition of DNase 1 successfully improved thrombolysis by potentiating fibrinolysis irrespective of COVID-19 status. Levels of neutrophil, NETs, and platelet markers in lysis supernatants were comparable between AIS thrombi from non-COVID-19 and COVID-19 patients.
CONCLUSIONS: These results show that COVID-19 does not impact NETs content or worsen fibrinolysis resistance of AIS thrombi, a therapeutic hurdle that could be overcome by DNase 1 even in the context of SARS-CoV-2 infection.
Disciplines :
Neurology
Author, co-author :
Desilles, Jean-Philippe; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France, Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
Solo Nomenjanahary, Mialitiana; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
Consoli, Arturo; Department of Stroke Centre and Diagnostic and Interventional Neuroradiology, University of Versailles and Saint Quentin en Yvelines, Foch Hospital, Suresnes, France
Ollivier, Véronique; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
Faille, Dorothée; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
Bourrienne, Marie-Charlotte; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
Hamdani, Mylène; Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
Dupont, Sébastien; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
Di Meglio, Lucas; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
Escalard, Simon; Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
Maier, Benjamin; Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
Blanc, Raphael; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France, Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
Piotin, Michel; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France, Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
Lapergue, Bertrand; Department of Stroke Centre and Diagnostic and Interventional Neuroradiology, University of Versailles and Saint Quentin en Yvelines, Foch Hospital, Suresnes, France
Ajzenberg, Nadine; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
Vasse, Marc; Biology Department, UMR-S 1176, Foch Hospital, Suresnes, France
Mazighi, Mikael; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France, Interventional Neuroradiology Department, Biological Resource Center, Rothschild Foundation Hospital, Paris, France
Ho-Tin-Noé, Benoît; Université de Paris and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France. Electronic address: benoit.ho-tin-noe@inserm.fr
compoCLOT study group
Désilles, Jean-Philippe
Mazighi, Mikael
Piotin, Michel
Blanc, Raphael
Redjem, Hocine
Smajda, Stanislas
Seners, Pierre
Escalard, Simon
Delvoye, François ; Université de Liège - ULiège > Département des sciences cliniques
Impact of COVID-19 on thrombus composition and response to thrombolysis: Insights from a monocentric cohort population of COVID-19 patients with acute ischemic stroke.
FRM - Fondation pour la Recherche Médicale ANR - Agence Nationale de la Recherche
Funding text :
This work was supported by INSERM, (grant #FR‐AVC‐003), (grant #DPC20171138959), (AP‐RM‐17‐005), and by a public grant overseen by the French National Research Agency (ANR) as part of the Investments for the Future program (PIA) under grant agreement No. ANR‐18‐RHUS‐0001 (RHU Booster) and ANR‐16‐RHUS‐0004 (RHU TRT_cSVD). L.D.M. is the recipient of a doctoral grant from . La Fondation pour la Recherche sur les AVC La Fondation pour la Recherche Médicale La Fondation de l’Avenir La Fondation de L’AvenirThis work was supported by INSERM, La Fondation pour la Recherche sur les AVC (grant #FR-AVC-003), La Fondation pour la Recherche Médicale (grant #DPC20171138959), La Fondation de l’Avenir (AP-RM-17-005), and by a public grant overseen by the French National Research Agency (ANR) as part of the Investments for the Future program (PIA) under grant agreement No. ANR-18-RHUS-0001 (RHU Booster) and ANR-16-RHUS-0004 (RHU TRT_cSVD). L.D.M. is the recipient of a doctoral grant from La Fondation de L’Avenir.
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382(23):2268-2270. doi:10.1056/NEJMc2008597
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683. doi:10.1001/jamaneurol.2020.1127
Escalard S, Maïer B, Redjem H, et al. Treatment of acute ischemic stroke due to large vessel occlusion with COVID-19. Stroke. 2020;51(8):2540-2543. doi:10.1161/STROKEAHA.120.030574
John S, Kesav P, Mifsud VA, et al. Characteristics of large-vessel occlusion associated with COVID-19 and ischemic stroke. Am J Neuroradiol. 2020;41(12):2263-2268. doi:10.3174/ajnr.A6799
Escalard S, Chalumeau V, Escalard C, et al. Early brain imaging shows increased severity of acute ischemic strokes with large vessel occlusion in COVID-19 patients. Stroke. 2020;51(11):3366-3370. doi:10.1161/STROKEAHA.120.031011
Weiss E, Roux O, Moyer JD, et al. Fibrinolysis resistance: a potential mechanism underlying COVID-19 coagulopathy. Thromb Haemost. 2020;120(9):1343-1345. doi:10.1055/s-0040-1713637
Grobbelaar LM, Venter C, Vlok M, et al. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Biosci Rep. 2021;41(8):BSR20210611. doi:10.1042/BSR20210611
Maier CL, Sarker T, Szlam F, Sniecinski RM. COVID-19 patient plasma demonstrates resistance to tPA-induced fibrinolysis as measured by thromboelastography. J Thromb Thrombolysis. 2021;52(3):766-771. doi:10.1007/s11239-021-02438-y
Hammer S, Häberle H, Schlensak C, et al. Severe SARS-CoV-2 infection inhibits fibrinolysis leading to changes in viscoelastic properties of blood clot: a descriptive study of fibrinolysis in COVID-19. Thromb Haemost. 2021;121(11):1417-1426. doi:10.1055/a-1400-6034
Heinz C, Miesbach W, Herrmann E, et al. Greater fibrinolysis resistance but no greater platelet aggregation in critically Ill COVID-19 patients. Anesthesiology. 2021;134(3):457-467. doi:10.1097/ALN.0000000000003685
Wright FL, Vogler TO, Moore EE, et al. Fibrinolysis shutdown correlation with thromboembolic events in severe COVID-19 infection. J Am Coll Surg. 2020;231(2):193-203.e1. doi:10.1016/j.jamcollsurg.2020.05.007
Zuo Y, Warnock M, Harbaugh A, et al. Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients. Sci Rep. 2021;11(1):1580. doi:10.1038/s41598-020-80010-z
Juneja GK, Castelo M, Yeh CH, et al. Biomarkers of coagulation, endothelial function, and fibrinolysis in critically ill patients with COVID-19: a single-center prospective longitudinal study. J Thromb Haemost. 2021;19(6):1546-1557. doi:10.1111/jth.15327
Page EM, Ariëns RAS. Mechanisms of thrombosis and cardiovascular complications in COVID-19. Thromb Res. 2021;200:1-8. doi:10.1016/j.thromres.2021.01.005
Spiezia L, Boscolo A, Poletto F, et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost. 2020;120(6):998-1000. doi:10.1055/s-0040-1710018
Henry BM, Benoit SW, de Oliveira MHS, Lippi G, Favaloro EJ, Benoit JL. ADAMTS13 activity to von Willebrand factor antigen ratio predicts acute kidney injury in patients with COVID-19: evidence of SARS-CoV-2 induced secondary thrombotic microangiopathy. Int J Lab Hematol. 2021;43(Suppl. 1):129-136. doi:10.1111/ijlh.13415
Mei ZW, van Wijk XMR, Pham HP, Marin MJ. Role of von Willebrand factor in COVID-19 associated coagulopathy. J Appl Lab Med. 2021;6(5):1305-1315. doi:10.1093/jalm/jfab042
Machlus KR, Cardenas JC, Church FC, Wolberg AS. Causal relationship between hyperfibrinogenemia, thrombosis, and resistance to thrombolysis in mice. Blood. 2011;117(18):4953-4963. doi:10.1182/blood-2010-11-316885
Sambola A, García Del Blanco B, Ruiz-Meana M, et al. Increased von Willebrand factor, P-selectin and fibrin content in occlusive thrombus resistant to lytic therapy. Thromb Haemost. 2016;115(6):1129-1137. doi:10.1160/TH15-12-0985
Marchi R, Rojas H. Effect of von Willebrand factor on clot structure and lysis. Blood Coagul Fibrinolysis. 2015;26(5):533-536. doi:10.1097/MBC.0000000000000284
Tanka-Salamon A, Kolev K, Machovich R, Komorowicz E. Proteolytic resistance conferred to fibrinogen by von Willebrand factor. Thromb Haemost. 2010;103(2):291-298. doi:10.1160/TH09-07-0420
Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12):e20201129. doi:10.1084/jem.20201129
Middleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169-1179. doi:10.1182/blood.2020007008
Blasco A, Coronado MJ, Hernández-Terciado F, et al. Assessment of neutrophil extracellular traps in coronary thrombus of a case series of patients with COVID-19 and myocardial infarction. JAMA Cardiol. 2021;6(4):469. doi:10.1001/jamacardio.2020.7308
Nicolai L, Leunig A, Brambs S, et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation. 2020;142(12):1176-1189. 10.1161/CIRCULATIONAHA.120.048488
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;324(8):782. doi:10.1001/jama.2020.12839
Di Meglio L, Desilles JP, Ollivier V, et al. Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. Neurology. 2019;93(18):e1686-e1698. doi:10.1212/WNL.0000000000008395
Di Meglio L, Desilles JP, Solonomenjanahary M, et al. DNA content in ischemic stroke thrombi can help identify cardioembolic strokes among strokes of undetermined cause. Stroke. 2020;51(9):2810-2816. doi:10.1161/STROKEAHA.120.029134
Di Meglio L, Desilles JP, Mazighi M, Ho-Tin-Noé B. Thrombolysis-resistant intracranial clot. Neurology. 2018;90(23):1075. doi:10.1212/WNL.0000000000005645
Khan Z, Shen XZ, Bernstein EA, et al. Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils. Blood. 2017;130(3):328-339. doi:10.1182/blood-2016-11-752006
Zhang S, Liu Y, Wang X, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol. 2020;13(1):120. doi:10.1186/s13045-020-00954-7
Campbell RA, Boilard E, Rondina MT. Is there a role for the ACE2 receptor in SARS-CoV-2 interactions with platelets? J Thromb Haemost. 2021;19(1):46-50. doi:10.1111/jth.15156
Yang J, Petitjean SJL, Koehler M, et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun. 2020;11(1):4541. doi:10.1038/s41467-020-18319-6
Mangold A, Alias S, Scherz T, et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116(7):1182-1192. doi:10.1161/CIRCRESAHA.116.304944
Ducroux C, Di Meglio L, Loyau S, et al. Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke. 2018;49(3):754-757. doi:10.1161/STROKEAHA.117.019896
Laridan E, Denorme F, Desender L, et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol. 2017;82(2):223-232. doi:10.1002/ana.24993
Staessens S, Denorme F, François O, et al. Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance. Haematologica. 2020;105(2):498-507. doi:10.3324/haematol.2019.219881
Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in COVID-19 patients. Blood. 2020;136(11):1317–1329. doi:10.1182/blood.2020007214
Zaid Y, Puhm F, Allaeys I, et al. Platelets can associate with SARS-CoV-2 RNA and are hyperactivated in COVID-19. Circ Res. 2020;127(11):1404-1418. doi:10.1161/CIRCRESAHA.120.317703
Koupenova M, Freedman JE. Platelets and COVID-19: inflammation, hyperactivation and additional questions. Circ Res. 2020;127(11):1419-1421. doi:10.1161/CIRCRESAHA.120.318218
Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127:104362. doi:10.1016/j.jcv.2020.104362
Longstaff C, Varjú I, Sótonyi P, et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem. 2013;288(10):6946-6956. doi:10.1074/jbc.M112.404301
Barbosa da Cruz D, Helms J, Aquino LR, et al. DNA-bound elastase of neutrophil extracellular traps degrades plasminogen, reduces plasmin formation, and decreases fibrinolysis: proof of concept in septic shock plasma. FASEB J. 2019;33(12):14270-14280. doi:10.1096/fj.201901363RRR
Desilles JP, Syvannarath V, Di Meglio L, et al. Downstream microvascular thrombosis in cortical venules is an early response to proximal cerebral arterial occlusion. J Am Heart Assoc. 2018;7(5):e007804. doi:10.1161/JAHA.117.007804