Article (Scientific journals)
Onsager variational principle for granular fluids
Noirhomme, Martial; Opsomer, Eric; Vandewalle, Nicolas
2024In Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
Peer Reviewed verified by ORBi
 

Files


Full Text
_Noirhomme_2024_PRE.pdf
Publisher postprint (3.45 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] Granular fluids, as defined by a collection of moving solid particles, is a paradigm of a dissipative system out of equilibrium. Inelastic collisions between particles is the source of dissipation, and is the origin of a transition from a gas to a liquidlike state. This transition can be triggered by an increase of the solid fraction. Moreover, in compartmentalized systems, this condensation is driving the entire granular fluid into a Maxwell demon phenomenon, localizing most of the grains into a specific compartment. Classical approaches fail to capture these phenomena, thus motivating many experimental and numerical works. Herein, we demonstrate that the Onsager variational principle is able to predict accurately the coexistence of gas-liquid states in granular systems, opening ways to model other phenomena observed in such dissipative systems like segregation or the jamming transition.
Disciplines :
Physics
Author, co-author :
Noirhomme, Martial  ;  Université de Liège - ULiège > Département de physique > Physique statistique
Opsomer, Eric  ;  Université de Liège - ULiège > Département de physique > Physique statistique
Vandewalle, Nicolas  ;  Université de Liège - ULiège > Département de physique > Physique statistique
Language :
English
Title :
Onsager variational principle for granular fluids
Publication date :
22 November 2024
Journal title :
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
ISSN :
1539-3755
eISSN :
1550-2376
Publisher :
American Physical Society, United States - Maryland
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 25 November 2024

Statistics


Number of views
9 (2 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi