[en] Granular fluids, as defined by a collection of moving solid particles, is a paradigm of a dissipative system out of equilibrium. Inelastic collisions between particles is the source of dissipation, and is the origin of a transition from a gas to a liquidlike state. This transition can be triggered by an increase of the solid fraction. Moreover, in compartmentalized systems, this condensation is driving the entire granular fluid into a Maxwell demon phenomenon, localizing most of the grains into a specific compartment. Classical approaches fail to capture these phenomena, thus motivating many experimental and numerical works. Herein, we demonstrate that the Onsager variational principle is able to predict accurately the coexistence of gas-liquid states in granular systems, opening ways to model other phenomena observed in such dissipative systems like segregation or the jamming transition.
Disciplines :
Physics
Author, co-author :
Noirhomme, Martial ; Université de Liège - ULiège > Département de physique > Physique statistique
Opsomer, Eric ; Université de Liège - ULiège > Département de physique > Physique statistique
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Language :
English
Title :
Onsager variational principle for granular fluids
Publication date :
22 November 2024
Journal title :
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
ISSN :
1539-3755
eISSN :
1550-2376
Publisher :
American Physical Society, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys. 57, 827 (1985) 0034-6861 10.1103/RevModPhys.57.827.
B. Andreotti, Y. Forterre, and O. Pouliquen, Granular Media Between Fluid and Solid (Cambridge University Press, Cambridge, 2013).
P. K. Haff, Grain flow as a fluid-mechanical phenomenon, J. Fluid Mech. 134, 401 (1983) 0022-1120 10.1017/S0022112083003419.
C. C. Maaß, N. Isert, G. Maret, and C. M. Aegerter, Experimental investigation of the freely cooling granular gas, Phys. Rev. Lett. 100, 248001 (2008) 0031-9007 10.1103/PhysRevLett.100.248001.
Y. Grasselli, G. Bossis, and G. Goutallier, Velocity-dependent restitution coefficient and granular cooling in microgravity, Europhys. Lett. 86, 60007 (2009) 0295-5075 10.1209/0295-5075/86/60007.
S. Tatsumi, Y. Murayama, H. Hayakawa, and M. Sano, Experimental study on the kinetics of granular gases under microgravity, J. Fluid Mech. 641, 521 (2009) 0022-1120 10.1017/S002211200999231X.
K. Harth, T. Trittel, S. Wegner, and R. Stannarius, Free cooling of a granular gas of rodlike particles in microgravity, Phys. Rev. Lett. 120, 214301 (2018) 0031-9007 10.1103/PhysRevLett.120.214301.
I. Goldhirsch and G. Zanetti, Clustering instability in dissipative gases, Phys. Rev. Lett. 70, 1619 (1993) 0031-9007 10.1103/PhysRevLett.70.1619.
A. Kudrolli, M. Wolpert, and J. P. Gollub, Cluster formation due to collisions in granular material, Phys. Rev. Lett. 78, 1383 (1997) 0031-9007 10.1103/PhysRevLett.78.1383.
F. Melo, P. B. Umbanhowar, and H. L. Swinney, Hexagons, kinks, and disorder in oscillated granular layers, Phys. Rev. Lett. 75, 3838 (1995) 0031-9007 10.1103/PhysRevLett.75.3838.
H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Granular solids, liquids, and gases, Rev. Mod. Phys. 68, 1259 (1996) 0034-6861 10.1103/RevModPhys.68.1259.
L. Butzhammer, S. Volkel, I. Rehberg, and K. Huang, Pattern formation in wet granular matter under vertical vibrations, Phys. Rev. E 92, 012202 (2015) 1539-3755 10.1103/PhysRevE.92.012202.
R. Delannay, A. Valance, A. Mangeney, O. Roche, and P. Richard, Granular and particle-laden flows: From laboratory experiments to field observations, J. Phys. D: Appl. Phys. 50, 053001 (2017) 0022-3727 10.1088/1361-6463/50/5/053001.
H. A. Janssen, Versuche über getreidedruck in silozellen, Z. ver. deut. Ing. 39, 1045 (1895).
A. J. Liu and S. R. Nagel, Jamming is not just cool any more, Nature (London) 396, 21 (1998) 0028-0836 10.1038/23819.
E. I. Corwin, H. M. Jaeger, and S. R. Nagel, Structural signature of jamming in granular media, Nature (London) 435, 1075 (2005) 0028-0836 10.1038/nature03698.
T. S. Majmudar and R. P. Behringer, Contact force measurements and stress-induced anisotropy in granular materials, Nature (London) 435, 1079 (2005) 0028-0836 10.1038/nature03805.
F. Pacheco-Vazquez, G. A. Caballero-Robledo, and J. C. Ruiz-Suarez, Superheating in granular matter, Phys. Rev. Lett. 102, 170601 (2009) 0031-9007 10.1103/PhysRevLett.102.170601.
J. Ren, J. A. Dijksman, and R. P. Behringer, Reynolds pressure and relaxation in a sheared granular system, Phys. Rev. Lett. 110, 018302 (2013) 0031-9007 10.1103/PhysRevLett.110.018302.
H. Mizuno, L. E. Silbert, and M. Sperl, Spatial distributions of local elastic moduli near the jamming transition, Phys. Rev. Lett. 116, 068302 (2016) 0031-9007 10.1103/PhysRevLett.116.068302.
D. Bi, J. Zhang, B. Chakraborty, and R. P. Behringer, Jamming by shear, Nature (London) 480, 355 (2011) 0028-0836 10.1038/nature10667.
V. B. Nguyen, T. Darnige, A. Bruand, and E. Clement, Creep and fluidity of a real granular packing near jamming, Phys. Rev. Lett. 107, 138303 (2011) 0031-9007 10.1103/PhysRevLett.107.138303.
T. S. Majmudar, M. Sperl, S. Luding, and R. P. Behringer, Jamming transition in granular systems, Phys. Rev. Lett. 98, 058001 (2007) 0031-9007 10.1103/PhysRevLett.98.058001.
P. Born, J. Schmitz, M. Bußmann, and M. Sperl, Drop tower setup for dynamic light scattering in dense gas-fluidized granular media, Microgravity Sci. Technol. 28, 413 (2016) 0938-0108 10.1007/s12217-016-9496-7.
E. Falcon, R. Wunenburger, P. Évesque, S. Fauve, C. Chabot, Y. Garrabos, and D. Beysens, Cluster formation in a granular medium fluidized by vibrations in low gravity, Phys. Rev. Lett. 83, 440 (1999) 0031-9007 10.1103/PhysRevLett.83.440.
A. Sack, K. Windows-Yule, M. Heckel, D. Werner, and T. Pöschel, Granular dampers in microgravity: Sharp transition between modes of operation, Granular Matter 22, 54 (2020) 1434-5021 10.1007/s10035-020-01017-x.
M. Noirhomme, A. Cazaubiel, A. Darras, E. Falcon, D. Fischer, Y. Garrabos, C. Lecoutre-Chabot, S. Merminod, E. Opsomer, F. Palencia, J. Schockmel, R. Stannarius, and N. Vandewalle, Threshold of gas-like to clustering transition in driven granular media in low-gravity environment, Europhys. Lett. 123, 14003 (2018) 1286-4854 10.1209/0295-5075/123/14003.
S. Aumaître, R. P. Behringer, A. Cazaubiel, E. Clément, J. Crassous, D. J. Durian, E. Falcon, S. Fauve, D. Fischer, A. Garcimartin, Y. Garrabos, M. Hou, X. Jia, C. Lecoutre, S. Luding, D. Maza, M. Noirhomme, E. Opsomer, F. Palencia, T. Pöschel, An instrument for studying granular media in low-gravity environment, Rev. Sci. Instrum. 89, 075103 (2018) 0034-6748 10.1063/1.5034061.
D. Puzyrev, K. Harth, T. Trittel, and R. Stannarius, Machine learning for 3d particle tracking in granular gases, Microgravity Sci. Technol. 32, 897 (2020) 0938-0108 10.1007/s12217-020-09800-4.
M. Noirhomme, A. Cazaubiel, E. Falcon, D. Fischer, Y. Garrabos, C. Lecoutre-Chabot, S. Mawet, E. Opsomer, F. Palencia, S. Pillitteri, and N. Vandewalle, Particle dynamics at the onset of the granular gas-liquid transition, Phys. Rev. Lett. 126, 128002 (2021) 0031-9007 10.1103/PhysRevLett.126.128002.
T. Steinpilz, G. Musiolik, M. Kruss, F. Jungmann, T. Demirci, M. Aderholz, J. E. Kollmer, J. Teiser, T. Bila, E. Guay, and G. Wurm, Arise: A granular matter experiment on the international space station, Rev. Sci. Instrum. 90, 104503 (2019) 0034-6748 10.1063/1.5095213.
S. E. Esipov and T. Pöschel, The granular phase diagram, J. Stat. Phys. 86, 1385 (1997) 0022-4715 10.1007/BF02183630.
S. Aumaître, A. Alastuey, and S. Fauve, A quasi-elastic regime for vibrated granular gases, Eur. Phys. J. B 54, 263 (2006) 1434-6028 10.1140/epjb/e2006-00447-7.
E. Opsomer, F. Ludewig, and N. Vandewalle, Dynamical clustering in driven granular gas, Europhys. Lett. 99, 40001 (2012) 0295-5075 10.1209/0295-5075/99/40001.
M. Noirhomme, F. Ludewig, N. Vandewalle, and E. Opsomer, Cluster growth in driven granular gases, Phys. Rev. E 95, 022905 (2017) 2470-0045 10.1103/PhysRevE.95.022905.
K. Roeller, J. P. D. Clewett, R. M. Bowley, S. Herminghaus, and M. R. Swift, Liquid-gas phase separation in confined vibrated dry granular matter, Phys. Rev. Lett. 107, 048002 (2011) 0031-9007 10.1103/PhysRevLett.107.048002.
L. H. Luu, G. Castillo, N. Mujica, and R. Soto, Capillarylike fluctuations of a solid-liquid interface in a noncohesive granular system, Phys. Rev. E 87, 040202 (R) (2013) 1539-3755 10.1103/PhysRevE.87.040202.
M. Noirhomme, E. Opsomer, N. Vandewalle, and F. Ludewig, Granular transport in driven granular gas, Eur. Phys. J. E 38, 9 (2015) 1292-8941 10.1140/epje/i2015-15009-4.
J. Eggers, Sand as Maxwell's demon, Phys. Rev. Lett. 83, 5322 (1999) 0031-9007 10.1103/PhysRevLett.83.5322.
D. van der Meer, P. Reimann, K. van der Weele, and D. Lohse, Spontaneous ratchet effect in a granular gas, Phys. Rev. Lett. 92, 184301 (2004) 0031-9007 10.1103/PhysRevLett.92.184301.
D. van der Meer, K. van der Weele, and P. Reimann, Granular fountains: Convection cascade in a compartmentalized granular gas, Phys. Rev. E 73, 061304 (2006) 1539-3755 10.1103/PhysRevE.73.061304.
M. Hou, W. Wang, and Q. Jiang, Granular clustering studied in microgravity, in Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite, edited by W. Hu and Q. Kang (Springer Singapore, Singapore, 2019) pp. 47-72.
M. Hou, H. Tu, R. Liu, Y. Li, K. Lu, P. Y. Lai, and C. K. Chan, Temperature oscillations in a compartmentalized bidisperse granular gas, Phys. Rev. Lett. 100, 068001 (2008) 0031-9007 10.1103/PhysRevLett.100.068001.
R. Liu, Y. Li, and M. Hou, Oscillatory phenomena of compartmentalized bidisperse granular gases, Phys. Rev. E 79, 052301 (2009) 1539-3755 10.1103/PhysRevE.79.052301.
M. Hou, Y. Li, R. Liu, Y. Zhang, and K. Lu, Oscillatory clusterings in compartmentalized granular systems, Phys. Status Solidi A 207, 2739 (2010) 1862-6300 10.1002/pssa.201026461.
E. Opsomer, M. Noirhomme, N. Vandewalle, and F. Ludewig, How dynamical clustering triggers Maxwell's demon in microgravity, Phys. Rev. E 88, 012202 (2013) 1539-3755 10.1103/PhysRevE.88.012202.
Y. Li, M. Hou, and P. Évesque, Directed clustering in driven compartmentalized granular gas systems in zero gravity, J. Phys.: Conf. Ser. 327, 012034 (2011) 1742-6596 10.1088/1742-6596/327/1/012034.
M. Arroyo, N. Walani, A. Torres-Sánchez, and D. Kaurin, Onsager's variational principle in soft matter: Introduction and application to the dynamics of adsorption of proteins onto fluid membranes, in The Role of Mechanics in the Study of Lipid Bilayers, edited by D. J. Steigmann (Springer International Publishing, Cham, 2018), pp. 287-332.
S. F. Edwards and R. B. S. Oakeshott, Theory of powders, Physica A 157, 1080 (1989) 0378-4371 10.1016/0378-4371(89)90034-4.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.