[en] More than 40% of endovascular therapy (EVT) fail to achieve complete reperfusion of the territory of the occluded artery in patients with acute ischemic stroke (AIS). Understanding factors influencing EVT could help overcome its limitations. Our objective was to study the impact of thrombus cell composition on EVT procedures, using a simulation system for modeling thrombus-induced large vessel occlusion (LVO) in flow conditions. In an open comparative trial, we analyzed the behavior of size-standardized platelet-rich and red blood cells (RBC)-rich thrombi during simulated stent retriever-mediated EVT procedures. Sixteen simulated EVT procedures were performed (8 RBC- vs. 8 platelet-rich thrombi). Platelet-rich thrombi were associated with a higher number of stent retriever passes (p = 0.03) and a longer procedure duration (p = 0.02) compared to RBC-rich thrombi. Conversely, RBC-rich thrombi released more embolic fragments than platelet-rich thrombi (p = 0.004). Both RBC-rich and platelet-rich thrombi underwent drastic compaction after being injected into the in vitro circulation model, and histologic analyses showed that these EVT-retrieved thrombi displayed features comparable to those previously observed in thrombi from patients with AIS patients having LVO, including a marked structural dichotomy between RBC- and platelet-rich areas. Our results show that the injection of in vitro-produced thrombi in artificial cerebrovascular arterial networks is suitable for testing recanalization efficacy and the risk of embolization of EVT devices and strategies in association with thrombus cell composition.
Disciplines :
Neurology
Author, co-author :
Freiherr von Seckendorff, Aurélien; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France ; Université de Paris, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
Delvoye, François ; Université de Liège - ULiège > Département des sciences cliniques ; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France
Levant, Paul; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France
Solo Nomenjanahary, Mialitiana; Université de Paris, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
Ollivier, Véronique; Université de Paris, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
Bourrienne, Marie-Charlotte; Université de Paris, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
Di Meglio, Lucas; Université de Paris, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
Piotin, Michel; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France ; Université de Paris, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
Escalard, Simon; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France
Maier, Benjamin; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France ; Université de Paris, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
Hebert, Solène; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France
Smajda, Stanislas; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France
Redjem, Hocine; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France
Mazighi, Mikael; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France ; Université de Paris, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
Blanc, Raphael; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France ; Université de Paris, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
Ho-Tin-Noé, Benoit; Université de Paris, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
Désilles, Jean-Philippe; Interventional Neuroradiology Department, Biological Resource Center, Hôpital Fondation Adolphe de Rothschild, Paris, France ; Université de Paris, Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
This work was supported by a personal legacy donation from Héla Salomon and by the French National Research Agency (ANR) as part of the Investments for the Future program (PIA) under grant agreement No. ANR-18-RHUS-0001 (RHU Booster) and ANR-16-RHUS-0004 (RHU TRT_cSVD).
Turc G Bhogal P Fischer U Khatri P Lobotesis K Mazighi M et al. European stroke organisation (ESO)–European society for minimally invasive neurological therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischaemic StrokeEndorsed by stroke alliance for Europe (SAFE). Eur Stroke J. (2019) 4:6–12. 10.1177/239698731983214031165090
Lapergue B Blanc R Gory B Labreuche J Duhamel A Marnat G et al. Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: the ASTER randomized clinical trial. JAMA. (2017) 318:443. 10.1001/jama.2017.964428763550
Turk AS Siddiqui A Fifi JT De Leacy RA Fiorella DJ Gu E et al. Aspiration thrombectomy versus stent retriever thrombectomy as first-line approach for large vessel occlusion (COMPASS): a multicentre, randomised, open label, blinded outcome, non-inferiority trial. Lancet. (2019) 393:998–1008. 10.1016/S0140-6736(19)30297-130860055
Zaidat OO Castonguay AC Linfante I Gupta R Martin CO Holloway WE et al. First pass effect: a new measure for stroke thrombectomy devices. Stroke. (2018) 49:660–6. 10.1161/STROKEAHA.117.02031529459390
Chueh JY Wakhloo AK Gounis MJ. Effectiveness of mechanical endovascular thrombectomy in a model system of cerebrovascular occlusion. AJNR Am J Neuroradiol. (2012) 33:1998–2003. 10.3174/ajnr.A310322555570
Mokin M Setlur Nagesh SV Ionita CN Levy EI Siddiqui AH. Comparison of modern stroke thrombectomy approaches using an in vitro cerebrovascular occlusion model. AJNR Am J Neuroradiol. (2015) 36:547–51. 10.3174/ajnr.A414925376809
Madjidyar J Hermes J Freitag-Wolf S Jansen O. Stent-thrombus interaction and the influence of aspiration on mechanical thrombectomy: evaluation of different stent retrievers in a circulation model. Neuroradiology. (2015) 57:791–7. 10.1007/s00234-015-1526-425903428
Madjidyar J Pineda Vidal L Larsen N Jansen O. Influence of Thrombus Composition on Thrombectomy: ADAPT vs. balloon guide catheter and stent retriever in a flow model. Fortschr Röntgenstr. (2020) 192:257–63. 10.1055/a-0998-424631514211
Johnson S Chueh J Gounis MJ McCarthy R McGarry JP McHugh PE Gilvarry M. Mechanical behavior of in vitro blood clots and the implications for acute ischemic stroke treatment. J Neurointerv Surg. (2019) 12:853–7. 10.1136/neurintsurg-2019-01548931780453
Jolugbo P Ariëns RAS. Thrombus composition and efficacy of thrombolysis and thrombectomy in acute ischemic stroke. Stroke. (2021) 52:1131–42. 10.1161/STROKEAHA.120.03281033563020
Marder VJ Chute DJ Starkman S Abolian AM Kidwell C Liebeskind D et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke. (2006) 37:2086–93. 10.1161/01.STR.0000230307.03438.9416794209
Schuhmann M Gunreben I Kleinschnitz C Kraft P. Immunohistochemical analysis of cerebral thrombi retrieved by mechanical thrombectomy from patients with acute ischemic stroke. Int J Mol Sci. (2016) 17:298. 10.3390/ijms1703029826927082
Ducroux C Di Meglio L Loyau S Delbosc S Boisseau W Deschildre C et al. Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke. (2018) 49:754–7. 10.1161/STROKEAHA.117.01989629866759
Staessens S Denorme F Francois O Desender L Dewaele T Vanacker P et al. Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance. Haematologica. (2020) 105:498–507. 10.3324/haematol.2019.21988131048352
Hashimoto T Hayakawa M Funatsu N Yamagami H Satow T Takahashi JC et al. Histopathologic analysis of retrieved thrombi associated with successful reperfusion after acute stroke thrombectomy. Stroke. (2016) 47:3035–7. 10.1161/STROKEAHA.116.01522827780903
Maekawa K Shibata M Nakajima H Mizutani A Kitano Y Seguchi M et al. Erythrocyte-rich thrombus is associated with reduced number of maneuvers and procedure time in patients with acute ischemic stroke undergoing mechanical thrombectomy. Cerebrovasc Dis Extra. (2018) 8:39–49. 10.1159/00048604229402828
Duffy S McCarthy R Farrell M Thomas S Brennan P Power S et al. Per-Pass analysis of thrombus composition in patients with acute ischemic stroke undergoing mechanical thrombectomy. Stroke. (2019) 50:1156–63. 10.1161/STROKEAHA.118.02341931514699
Gunning GM McArdle K Mirza M Duffy S Gilvarry M Brouwer PA. Clot friction variation with fibrin content; implications for resistance to thrombectomy. J Neurointerv Surg. (2018) 10:34–8. 10.1136/neurintsurg-2016-01272128044009
Swieringa F Baaten CCFMJ Verdoold R Mastenbroek TG Rijnveld N van der Laan KO et al. Platelet control of fibrin distribution and microelasticity in thrombus formation under flow. Arterioscler Thromb Vasc Biol. (2016) 36:692–9. 10.1161/ATVBAHA.115.30653726848157
Tutwiler V Litvinov RI Lozhkin AP Peshkova AD Lebedeva T Ataullakhanov FI et al. Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood. (2016) 127:149–59. 10.1182/blood-2015-05-64756026603837
Sporns PB Hanning U Schwindt W Velasco A Buerke B Cnyrim C et al. Ischemic stroke: histological thrombus composition and pre-interventional CT attenuation are associated with intervention time and rate of secondary embolism. Cerebrovasc Dis. (2017) 44:344–50. 10.1159/00048157829130956
Di Meglio L Desilles J-P Ollivier V Nomenjanahary MS Di Meglio S Deschildre C et al. Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. Neurology. (2019) 93:14. 10.1212/WNL.000000000000839531659139
Chalumeau V Blanc R Redjem H Ciccio G Smajda S Desilles J-P et al. Anterior cerebral artery embolism during thrombectomy increases disability and mortality. J NeuroIntervent Surg. (2018) 10:1057–62. 10.1136/neurintsurg-2018-01379329739828
Ye G Qi P Chen K Tan T Cao R Chen J et al. Risk of secondary embolism events during mechanical thrombectomy for acute ischemic stroke: a single-center study based on histological analysis. Clin Neurol Neurosurg. (2020) 193:105749. 10.1016/j.clineuro.2020.10574932203703
Goebel J Gaida B-J Wanke I Kleinschnitz C Koehrmann M Forsting M et al. Is histologic thrombus composition in acute stroke linked to stroke etiology or to interventional parameters? AJNR Am J Neuroradiol. (2020) 41:650–7. 10.3174/ajnr.A646732193192
Kaesmacher J Boeckh-Behrens T Simon S Maegerlein C Kleine JF Zimmer C et al. Risk of thrombus fragmentation during endovascular stroke treatment. AJNR Am J Neuroradiol. (2017) 38:991–8. 10.3174/ajnr.A510528279987
Laridan E Denorme F Desender L François O Andersson T Deckmyn H et al. Neutrophil extracellular traps in ischemic stroke thrombi: NETs in stroke. Ann Neurol. (2017) 82:223–32. 10.1002/ana.2499332434865
Weafer FM Duffy S Machado I Gunning G Mordasini P Roche E et al. Characterization of strut indentation during mechanical thrombectomy in acute ischemic stroke clot analogs. J Neurointerv Surg. (2019) 11:891–7. 10.1136/neurintsurg-2018-01460130661030
Rijken DC Abdul S Malfliet JJMC Leebeek FWG Uitte de Willige S. Compaction of fibrin clots reveals the antifibrinolytic effect of factor XIII. J Thromb Haemost. (2016) 14:1453–61. 10.1111/jth.1335427749008
Tutwiler V Peshkova AD Le Minh G Zaitsev S Litvinov RI Cines DB et al. Blood clot contraction differentially modulates internal and external fibrinolysis. J Thromb Haemost. (2019) 17:361–70. 10.1111/jth.1437030582674
Cines DB Lebedeva T Nagaswami C Hayes V Massefski W Litvinov RI et al. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood. (2014) 123:1596–603. 10.1182/blood-2013-08-52386024335500
Seners P Perrin C Lapergue B Henon H Debiais S Sablot D et al. Bridging therapy or IV thrombolysis in minor stroke with large vessel occlusion. Ann Neurol. (2020) 88:160–9. 10.1002/ana.2575632350929
Vidale S Romoli M Consoli D Agostoni EC. Bridging versus direct mechanical thrombectomy in acute ischemic stroke: a subgroup pooled meta-analysis for time of intervention, eligibility, and study design. Cerebrovasc Dis. (2020) 49:223–32. 10.1159/00050784432335550
Bellwald S Weber R Dobrocky T Nordmeyer H Jung S Hadisurya J et al. Direct mechanical intervention versus bridging therapy in stroke patients eligible for intravenous thrombolysis: a pooled analysis of 2 registries. Stroke. (2017) 48:3282–8. 10.1161/STROKEAHA.117.01845929114095
Rossi R Molina S Mereuta OM Douglas A Fitzgerald S Tierney C et al. Does prior administration of rtPA influence acute ischemic stroke clot composition? Findings from the analysis of clots retrieved with mechanical thrombectomy from the RESTORE registry. J Neurol. (2021). 10.1007/s00415-021-10758-534415423