[en] We investigate herein the impact of helical structures on the motion of asymmetrical droplets along vertically twisted fibers. The droplet adopts helical motion around the bundle driven by gravity. This complex motion can be manipulated by varying the twists turns of the fibers. When the droplet size is smaller than the characteristic length of the helix (pitch), the droplet adopts a predominant helical motion correlated to the groove of the twisted fibers. When the droplet size exceeds the pitch length, a mixed motion of intermittent vertical sliding and helical movement emerges. A model describes rotational and linear speeds as a function of the number of fiber twist turns. This research highlights the profound role of substructures in droplet dynamics, offering fresh insight into droplet manipulation or fiber-based devices.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Van Hulle, Joséphine ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Delforge, Cyril ; Université de Liège - ULiège > Département de physique
Léonard, Matteo ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Follet, E; GRASP, Institute of Physics B5a, University of Liège, Liège B4000, Belgium
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
WWAP . The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water; UNESCO: Paris, 2023.
Shi, W.; Anderson, M. J.; Tulkoff, J. B.; Kennedy, B. S.; Boreyko, J. B. Fog Harvesting with Harps. ACS Appl. Mater. Interfaces 2018, 10, 11979- 11986, 10.1021/acsami.7b17488
Shi, W.; van der Sloot, T. W.; Hart, B. J.; Kennedy, B. S.; Boreyko, J. B. Harps enable water harvesting under light fog conditions. Adv. Sust. Syst. 2020, 4, 2000040, 10.1002/adsu.202000040
Jiang, Y.; Machado, C.; Park, K. K. From capture to transport: A review of engineered surfaces for fog collection. Droplet 2023, 2, e55 10.1002/dro2.55
Li, J.; Ran, R.; Wang, H. W. Y.; Wang, Y.; Chen, Y.; Niu, S.; Arratia, P. E.; Yang, S. Aerodynamics-assisted, efficient and scalable kirigami fog collectors. Nat. Commun. 2021, 12, 5484, 10.1038/s41467-021-25764-4
Bintein, P.-B.; Cornu, A.; Weyer, F.; De Coster, N.; Vandewalle, N.; Terwagne, D. Kirigami fog nets: how strips improve water collection. npj Clean Water 2023, 6, 54, 10.1038/s41545-023-00266-6
Huang, Z.; Liao, X.; Kang, Y.; Yin, G.; Yao, Y. Equilibrium of drops on inclined fibers. J. Colloid Interface Sci. 2009, 330, 399- 403, 10.1016/j.jcis.2008.10.068
Gilet, T.; Terwagne, D.; Vandewalle, N. Droplets sliding on fibres. Eur. Phys. J. E 2010, 31, 253- 262, 10.1140/epje/i2010-10563-9
Poulain, S.; Carlson, A. Sliding, vibrating and swinging droplets on an oscillating fibre. J. Fluid Mech. 2023, 967, A24, 10.1017/jfm.2023.462
Weyer, F.; Duchesne, A.; Vandewalle, N. Switching behavior of droplets crossing nodes on a fiber network. Sci. Rep. 2017, 7, 13309, 10.1038/s41598-017-13009-8
Duprat, C.; Protière, S.; Beebe, A. Y.; Stone, H. A. Wetting of flexible fibre arrays. Nature 2012, 481, 510- 513, 10.1038/nature10779
Gabbard, C. T.; Bostwick, J. B. Thin film flow between fibers: Inertial sheets and liquid bridge patterns. Phys. Rev. Fluids 2023, 8, 110505, 10.1103/PhysRevFluids.8.110505
Lorenceau, E.; Clanet, C.; Quéré, D. Capturing drops with a thin fiber. J. Colloid Interface Sci. 2004, 510, 29- 45, 10.1016/j.jcis.2004.06.054
Pan, Z.; Weyer, F.; Pitt, W. G.; Vandewalle, N.; Truscott, T. T. Drop on a Bent Fibre. Soft Matter 2018, 14, 3724- 3729, 10.1039/C7SM01729D
Leonard, M.; Van Hulle, J.; Weyer, F.; Terwagne, D.; Vandewalle, N. Droplets sliding on single and multiple vertical fibers. Phys. Rev. Fluids 2023, 8, 103601, 10.1103/PhysRevFluids.8.103601
Van Hulle, J.; Vandewalle, N. Effect of groove curvature on droplet spreading. Soft Matter 2023, 19, 4669- 4675, 10.1039/D3SM00715D
Kern, V. R.; Carlson, A. Twisted Fibers Enable Drop Flow Control and Enhance Fog Capture. Proc. Natl. Acad. Sci. 2024, 121, e2402252121 10.1073/pnas.2402252121
Olsen, K.; Bohr, J. The generic geometry of helices and their close-packed structures. Theor. Chem. Acc. 2010, 125, 207- 215, 10.1007/s00214-009-0639-4
Hanlan, J. M.; Davis, G. E.; Durian, D. J. Twist and measure: characterizing the effective radius of strings and bundles under twisting contraction. Soft Matter 2023, 19, 4315- 4322, 10.1039/D3SM00067B
McHale, G.; Newton, M. I.; Carroll, B. J. The Shape and Stability of Small Liquid Drops on Fibers. Oil Gas Sci. Technol. 2001, 56, 47- 54, 10.2516/ogst:2001006
McHale, G.; Newton, M. I. Global geometry and the equilibrium shapes of liquid drops on fibers. Colloids Surf. 2002, 206, 79- 86, 10.1016/S0927-7757(02)00081-X
Gabbard, C. T.; Bostwick, J. B. Asymmetric instability in thin-film flow down a fiber. Phys. Rev. Fluids 2021, 6, 034005, 10.1103/PhysRevFluids.6.034005
Segur, J. B.; Oberstar, H. E. Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem. 1951, 43, 2117- 2120, 10.1021/ie50501a040
Sadeghpour, A.; Zeng, Z.; Ji, H.; Dehdari Ebrahimi, N.; Bertozzi, A. L.; Ju, Y. S. Water vapor capturing using an array of traveling liquid beads for desalination and water treatment. Sci. Adv. 2019, 5, eaav7662 10.1126/sciadv.aav7662
Chinju, H.; Uchiyama, K.; Mori, Y. H. "String-of-beads” flow of liquids on vertical wires for gas absorption. AIChE journal 2000, 46, 937- 945, 10.1002/aic.690460508