Collective behaviour; Collective dynamics; Density of particles; Dipolar interaction; Dynamical regime; Magnetic energies; Self-propelled particles; Statistical and Nonlinear Physics; Statistics and Probability; Condensed Matter Physics
Abstract :
[en] We present a numerical study of the collective behavior of self-propelled particles for which dipolar interactions are considered. These are obtained by introducing pointlike magnetic dipoles in the particles. Various dynamical regimes are found depending on three major parameters: the density of particles, the ratio Γ defined as the competition between kinetic energy and potential magnetic energy, as well as the orientation of the magnetic dipoles inherent to the particles. Patterns such as chains, vortices, flocks, and strips have been obtained.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Vanesse, N; GRASP, Institute of Physics B5a, University of Liège, 4000 Liège, Belgium
Opsomer, Eric ; Université de Liège - ULiège > Département de physique > Physique statistique
Lumay, Geoffroy ; Université de Liège - ULiège > Département de physique > Physique expérimentale de la matière molle et des systèmes complexes
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Language :
English
Title :
Collective dynamics of dipolar self-propelled particles.
ULiège - Université de Liège F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This work is financially supported by the University of Liège through the CESAM Research Unit. N. Vanesse is financially supported by FRS-FNRS (Brussels, Belgium) through Grant No. PDR.T.0251.20.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
C. Becco, N. Vandewalle, J. Delcourt, and P. Poncin, Experimental evidences of a structural and dynamical transition in fish school, Physica A 367, 487 (2006) 0378-4371 10.1016/j.physa.2005.11.041.
K. Faucher, E. Parmentier, C. Becco, N. Vandewalle, and P. Vandewalle, Fish lateral system is required for accurate control of shoaling behaviour, Anim. Behav. 79, 679 (2010) 0003-3472 10.1016/j.anbehav.2009.12.020.
N. Miller and R. Gerlai, From schooling to shoaling: Patterns of collective motion in sebrafish (Danio rerio), PLoS ONE 7, e48865 (2012) 10.1371/journal.pone.0048865.
D. S. Calovi, U. Lopez, S. Ngo, C. Sire, H. Chaté, and G. Theraulaz, Swarming, schooling, milling: Phase diagram of a data-driven fish school model, New J. Phys. 16, 015026 (2014) 1367-2630 10.1088/1367-2630/16/1/015026.
M. Nagy, Z. Ákos, D. Biro, and T. Vicsek, Hierarchical group dynamics in pigeon flocks, Nature (London) 464, 890 (2010) 0028-0836 10.1038/nature08891.
R. F. Storms, C. Carere, F. Zoratto, and C. K. Hemelrijk, Complex patterns of collective escape in starling flocks under predation, Behav. Eco. Soc. 73, 10 (2019) 0340-5443 10.1007/s00265-018-2609-0.
M. Ballerini, Empirical investigation of starling flocks: A benchmark study in collective animal behavior, Anim. Behav. 76, 201 (2008) 0003-3472 10.1016/j.anbehav.2008.02.004.
A. Attanasi, Emergence of collective changes in travel direction of starling flocks from individual birds' fluctuations, J. R. Soc. Interface. 12, 20150319 (2015) 1742-5689 10.1098/rsif.2015.0319.
B. Zhang, A. Sokolov, and A. Snezhko, Reconfigurable emergent patterns in active chiral fluids, Nat. Commun. 11, 4401 (2020) 2041-1723 10.1038/s41467-020-18209-x.
A. Nourhani and D. Saintillan, Spontaneous directional flow of active magnetic particles, Phys. Rev. E 103, L040601 (2021) 2470-0045 10.1103/PhysRevE.103.L040601.
J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk, Phys. Rev. Lett. 99, 048102 (2007) 0031-9007 10.1103/PhysRevLett.99.048102.
H. Zhao, H. Liu, Y.-W. Leung, and X. Chu, Self-adaptative collective motion of swarm robots, IEEE Trans. Automat. Sci. Eng. 15, 1533 (2018) 1545-5955 10.1109/TASE.2018.2840828.
G. Wang, Emergent Field-Driven Robot Swarm States, Phys. Rev. Lett. 126, 108002 (2021) 0031-9007 10.1103/PhysRevLett.126.108002.
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, Novel Type of Phase Transition in a System of Self-Driven Particles, Phys. Rev. Lett. 75, 1226 (1995) 0031-9007 10.1103/PhysRevLett.75.1226.
I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, Collective memory and spatial sorting in animal groups, J. Theor. Biol. 218, 1 (2002) 0022-5193 10.1006/jtbi.2002.3065.
D. Grossman, I. S. Aranson, and E. Ben-Jacob, Emergence of agent swarm migration and vortex formation through inelastic collisions, New J. Phys. 10, 023036 (2008) 1367-2630 10.1088/1367-2630/10/2/023036.
C. K. Hemelrijk and J. Wantia, Individual variation by self-organisation, Neurosc. Bio. Rev. 29, 125 (2005) 0149-7634 10.1016/j.neubiorev.2004.07.003.
P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, Self-Propelled Janus Particles in a Ratchet: Numerical Simulations, Phys. Rev. Lett. 110, 268301 (2013) 0031-9007 10.1103/PhysRevLett.110.268301.
V. Telezki and S. Klumpp, Simulations of structure formation by confined dipolar active particles, Soft Matter 16, 10537 (2020) 1744-683X 10.1039/D0SM00926A.
T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep. 517, 71 (2012) 0370-1573 10.1016/j.physrep.2012.03.004.
J. Delcourt, N. W. F. Bode, and M. Denoël, Collective vortex behaviors: Diversity, proximate, and ultimate causes of circular animal group movements, Quart. Rev. Bio. 91, 1 (2016) 0033-5770 10.1086/685301.
S. Bazazi, K. S. Pfenning, N. O. Handegard, and I. D. Couzin, Vortex formation and foraging in polyphenic spadefoot toad tadpoles, Behav. Ecol. Sociobiol. 66, 879 (2012) 0340-5443 10.1007/s00265-012-1336-1.
M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal, Kilobot: A low cost robot with scalable operations designed for collective behaviors, Robot. Auton. Syst. 62, 966 (2014) 10.1016/j.robot.2013.08.006.
P. Baconnier, D. Shohat, C. Hernández López, C. Coulais, V. Démery, G. Düring, and O. Dauchot, Selective and collective actuation in active solids, Nat. Phys. 18, 1234 (2022) 1745-2473 10.1038/s41567-022-01704-x.
E. Altshuler, J. M. Pastor, A. Garcimartín, I. Zuriguel, D. Maza, and C. M. Aegerter, Vibrot, a simple device for the conversion of vibration into rotation mediated by friction: Preliminary evaluation, PloS One 8, e67838 (2013) 10.1371/journal.pone.0067838.
J. Deseigne, O. Dauchot, and H. Chaté, Collective Motion of Vibrated Polar Disks, Phys. Rev. Lett. 105, 098001 (2010) 0031-9007 10.1103/PhysRevLett.105.098001.
C. A. Weber, T. Hanke, J. Deseigne, S. Léonard, O. Dauchot, E. Frey, and H. Chaté, Long-Range Ordering of Vibrated Polar Disks, Phys. Rev. Lett. 110, 208001 (2013) 0031-9007 10.1103/PhysRevLett.110.208001.
J. Deseigne, S. Léonard, O. Dauchot, and H. Chaté, Vibrated polar disks: Spontaneous motion, binary collisions, and collective dynamics, Soft Matter 8, 5629 (2012) 1744-683X 10.1039/c2sm25186h.
N. H. P. Nguyen, D. Klotsa, M. Engel, and S. C. Glotzer, Emergent Collective Phenomena in a Mixture of Hard Shapes Through Active Rotation, Phys. Rev. Lett. 112, 075701 (2014) 0031-9007 10.1103/PhysRevLett.112.075701.
K. Yeo, E. Lushi, P. M. Vlahovska, Collective Dynamics in a Binary Mixture of Hydrodynamically Coupled Microrotors, Phys. Rev. Lett. 114, 188301 (2015) 0031-9007 10.1103/PhysRevLett.114.188301.
C. Scholz, M. Engel, and T. Pöschel, Rotating robots move collectively and self-organize, Nat. Commun. 9, 931 (2018) 2041-1723 10.1038/s41467-018-03154-7.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.108.024608 for details of the DEM model with parameter values and implementation of interaction forces.
P. A. Cundall and O. D. L. Strack, A discrete numerical model for granular assemblies, Géotechnique 29, 47 (1979) 10.1680/geot.1979.29.1.47.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.