[en] Recent progress in the field of tactile coding suggests that discrimination of texture may involve the instantaneous kinematic analysis of frictional stick-slip movements. The idea has received support from analytical psychophysical experiments employing changes of pulsatile skin deflections in a well-adapted state - i.e. when changing repetitive pulsatile stimulation from one pulse shape to another. Here we investigated whether perception of pulse shapes is possible with single, isolated pulses. In other words, whether the well-described neuronal 'onset-responses' in central parts of the tactile pathway, which differ largely from 'adapted responses', carry information about pulse shape. We tested human participants on a pulse shape 2AFC discrimination paradigm: in each trial, 3 pulsatile skin indentations were presented at an interval of 0.5s. Either the first or the last pulse deviated in its shape, which the participants had to correctly identify. The task could not be solved by simply integrating tactile response across the 3 pulses. A majority of the participants (18 out of 30) yielded a performance of p(correct)>0.75, indicating that isolated pulse shapes reach perception. The performance was enhanced by presenting the same shape changes in the context of a preadapting series of pulses. Participants confronted with the 3-pulse test did not show a systematic preference for the kinematic parameter used to change the shape. We conclude that perceptual processes in principle have access to the kinematic shape of isolated pulsatile skin deflections. However, sensory adaption plays a crucial role for the quality and specificity of encoding kinematic pulse profiles.
Disciplines :
Neurosciences & behavior
Author, co-author :
Bhattacharjee, Arindam; Hertie Institute for Clinical Brain Research, Germany
Antony, Harry ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie de l'adulte ; Hertie Institute for Clinical Brain Research, Tübingen, Germany
Schwarz, Cornelius; Center for Integrative Neuroscience, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
Language :
English
Title :
Human Tactile Discrimination of Pulse Shape Is Possible Without Pre-Adaptation.
Johnson KO, Hsiao SS. Neural mechanisms of tactual form and texture perception. Annu Rev Neurosci 15: 227-250, 1992. doi:10.1146/annurev.ne.15.030192.001303.
Hollins M, Risner SR. Evidence for the duplex theory of tactile texture perception. Percept Psychophys 62: 695-705, 2000. doi:10. 3758/bf03206916.
Hollins M, Bensmaïa SJ, Washburn S. Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures. Somatosens Mot Res 18: 253-262, 2001. doi:10.1080/01421590120089640.
Schwarz C. The slip hypothesis: tactile perception and its neuronal bases. Trends Neurosci 39: 449-462, 2016. doi:10.1016/j.tins.2016. 04.008.
Katz D. Der Aufbau der Tastwelt [The World of Touch], edited by Krueger LE. Leibzig, Germany: Verlag von Ambrosius Barth, 1925. (Translated. Hillsdale, NJ: Erlbaum, 1989.)
Luna R, Hernandez A, Brody CD, Romo R. Neural codes for perceptual discrimination in primary somatosensory cortex. Nat Neurosci 8: 1210-1219, 2005. doi:10.1038/nn1513.
LaMotte RH, Mountcastle VB. Capacities of humans and monkeys to discriminate vibratory stimuli of different frequency and amplitude: a correlation between neural events and psychological measurements. J Neurophysiol 38: 539-559, 1975. doi:10.1152/jn.1975.38. 3.539.
von B_ek_esy G. Experiments in Hearing. New York: McGraw, 1960.
Jadhav SP, Feldman DE. Texture coding in the whisker system. Curr Opin Neurobiol 20: 313-318, 2010. doi:10.1016/j.conb.2010.02. 014.
Oladazimi M, Putelat T, Szalai R, Noda K, Shimoyama I, Champneys A, Schwarz C. Conveyance of texture signals along a rat whisker. Sci Rep 11: 13570, 2021 [Erratum in Sci Rep 11: 24233, 2021]. doi:10.1038/s41598-021-92770-3.
Oladazimi M, Brendel W, Schwarz C. Biomechanical texture coding in rat whiskers. Sci Rep 8: 11139, 2018. doi:10.1038/s41598-018-29225-9.
Laturnus S, Hoffmann A, Chakrabarti S, Schwarz C. Functional analysis of information rates conveyed by rat whisker-related trigeminal nuclei neurons. J Neurophysiol 125: 1517-1531, 2021. doi:10.1152/jn.00350.2020.
Waiblinger C, Brugger D, Schwarz C. Vibrotactile discrimination in the rat whisker system is based on neuronal coding of instantaneous kinematic cues. Cereb Cortex 25: 1093-1106, 2015. doi:10.1093/cercor/bht305.
Waiblinger C, Brugger D, Whitmire CJ, Stanley GB, Schwarz C. Support for the slip hypothesis from whisker-related tactile perception of rats in a noisy environment. Front Integr Neurosci 9: 53, 2015. doi:10.3389/fnint.2015.00053.
St€uttgen MC, Schwarz C. Integration of vibrotactile signals for whisker-related perception in rats is governed by short time constants: comparison of neurometric and psychometric detection performance. J Neurosci 30: 2060-2069, 2010. doi:10.1523/JNEUROSCI.3943-09.2010.
Bhattacharjee A, Braun C, Schwarz C. Humans use a temporally local code for vibrotactile perception. eNeuro 8: ENEURO.0263-21.2021, 2021. doi:10.1523/ENEURO.0263-21.2021.
Bhattacharjee A, Schwarz C. Temporally local tactile codes can be stored in working memory. Front Hum Neurosci 16: 840108-840109, 2022. doi:10.3389/fnhum.2022.840108.
Fairhall AL, Lewen GD, Bialek W, Steveninck RV. Efficiency and ambiguity in an adaptive neural code. Nature 412: 787-792, 2001. doi:10.1038/35090500.
Maravall M, Petersen RS, Fairhall AL, Arabzadeh E, Diamond ME. Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol 5: e19, 2007. doi:10.1371/journal.pbio.0050019.
Lak A, Arabzadeh E, Diamond ME. Enhanced response of neurons in rat somatosensory cortex to stimuli containing temporal noise. Cereb Cortex 18: 1085-1093, 2008. doi:10.1093/cercor/bhm144.
Goble AK, Hollins M. Vibrotactile adaptation enhances frequency discrimination. J Acoust Soc Am 96: 771-780, 1994. doi:10.1121/1.410314.
Goble AK, Hollins M. Vibrotactile adaptation enhances amplitude discrimination. J Acoust Soc Am 93: 418-424, 1993. doi:10. 1121/1.405621.
Wang Q, Webber RM, Stanley GB. Thalamic synchrony and the adaptive gating of information flow to cortex. Nat Neurosci 13: 1534-1541, 2010. doi:10.1038/nn.2670.
McDermott JH, Simoncelli EP. Sound texture perception via statistics of the auditory periphery: Evidence from sound synthesis. Neuron 71: 926-940, 2011. doi:10.1016/j.neuron.2011.06.032.
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97-113, 1971. doi:10.1016/0028-3932(71)90067-4.
Grant AC, Zangaladze A, Thiagarajah MC, Sathian K. Tactile perception in developmental dyslexia: a psychophysical study using gratings. Neuropsychologia 37: 1201-1211, 1999. doi:10.1016/s0028-3932(99)00013-5.
Laasonen M, Service E, Virsu V. Temporal order and processing acuity of visual, auditory, and tactile perception in developmentally dyslexic young adults. Cogn Affect Behav Neurosci 1: 394-410, 2001. doi:10.3758/cabn.1.4.394.
Hyllienmark L, Brismar T, Ludvigsson J. Subclinical nerve dysfunction in children and adolescents with IDDM. Diabetologia 38: 685-692, 1995. doi:10.1007/BF00401840.
Tannan V, Simons S, Dennis RG, Tommerdahl M. Effects of adaptation on the capacity to differentiate simultaneously delivered dualsite vibrotactile stimuli. Brain Res 1186: 164-170, 2007. doi:10.1016/j. brainres.2007.10.024.
de Lafuente V, Romo R. Neuronal correlates of subjective sensory experience. Nat Neurosci 8: 1698-1703, 2005. doi:10.1038/nn1587.
de Lafuente V, Romo R, Lafuente V, De Romo R. Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proc Natl Acad Sci USA 103: 14266-14271, 2006. doi:10.1073/pnas.0605826103.
Mountcastle VB, TalbotWH, Sakata H, Hyvarinen J. Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J Neurophysiol 32: 452-484, 1969. doi:10.1152/jn.1969.32.3.452.
Garabedian CE, Jones SR, Merzenich MM, Dale A, Moore CI. Bandpass response properties of rat SI neurons. J Neurophysiol 90: 1379-1391, 2003. doi:10.1152/jn.01158.2002.
Wichmann FA, Hill NJ. The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63: 1293-1313, 2001. doi:10.3758/bf03194544.
Freeman AW, Johnson KO. A model accounting for effects of vibratory amplitude on responses of cutaneous mechanorecpetors in macaque monkey. J Physiol 323: 43-64, 1982. doi:10.1113/jphysiol. 1982.sp014060.
Bolanowski SJ, Gescheider GA, Verrillo RT, Checkosky CM. Four channels mediate the mechanical aspects of touch. J Acoust Soc Am 84: 1680-1694, 1988. doi:10.1121/1.397184.
Chagas AM, Theis L, Sengupta B, St€uttgen MC, Bethge M, Schwarz C. Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents. Front Neural Circuits 7: 190, 2013. doi:10.3389/fncir.2013.00190.
Sanchez-Jimenez A, Panetsos F, Murciano A. Early frequency-dependent information processing and cortical control in the whisker pathway of the rat: electrophysiological study of brainstem nuclei principalis and interpolaris. Neuroscience 160: 212-226, 2009. doi:10.1016/j.neuroscience.2009.01.075.
Gerdjikov TV, Bergner CG, St€uttgen MC, Waiblinger C, Schwarz C. Discrimination of vibrotactile stimuli in the rat whisker system: behavior and neurometrics. Neuron 65: 530-540, 2010 [Erratum in Neuron 66: 808, 2010]. doi:10.1016/j.neuron.2010.02.007.
Talbot WH, Darian-Smith I, Kornhuber HH, Mountcastle VB. The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 31: 301-334, 1968. doi:10.1152/jn.1968.31.2.301.
Arabzadeh E, Petersen RS, Diamond ME. Encoding of whisker vibration by rat barrel cortex neurons: implications for texture discrimination. J Neurosci 23: 9146-9154, 2003. doi:10.1523/JNEUROSCI.23-27-09146.2003.
Johansson RS, Lamotte RH. Tactile detection thresholds for a single asperity on an otherwise smooth surface. Somatosens Res 1: 21-31, 1983. doi:10.3109/07367228309144538.
St€uttgen MC, R€uter J, Schwarz C. Two psychophysical channels of whisker deflection in rats align with two neuronal classes of primary afferents. J Neurosci 26: 7933-7941, 2006. doi:10.1523/JNEUROSCI.1864-06.2006.
St€uttgen MC, Schwarz C, J€akel F. Mapping spikes to sensations. Front Neurosci 5: 125, 2011. doi:10.3389/fnins.2011.00125.
Verrillo RT, Gescheider GA. Effect of prior stimulation on vibrotactile thresholds. Sens Processes 1: 292-300, 1977.
Hollins M, Goble AK, Whitsel BL, Tommerdahl M. Time course and action spectrum of vibrotactile adaptation. Somatosens Mot Res 7: 205-221, 1990. doi:10.3109/08990229009144707.
Gescheider GA, Frisina RD, Verrillo RT. Selective adaptation of vibrotactile thresholds. Sens Processes 3: 37-48, 1979.
Mountcastle VB, Talbot WH, Darian-Smith I, Kornhuber HH. Neural basis of the sense of flutter-vibration. Science 155: 597-600, 1967. doi:10.1126/science.155.3762.597.
St€uttgen MC, Schwarz C. Psychophysical and neurometric detection performance under stimulus uncertainty. Nat Neurosci 11: 1091-1099, 2008. doi:10.1038/nn.2162.
Mountcastle VB, LaMotte RH, Carli G. Detection thresholds for stimuli in humans and monkeys: comparison with threshold events in mechanoreceptive afferent nerve fibers innervating the monkey hand. J Neurophysiol 35: 122-136, 1972. doi:10.1152/jn.1972.35.1.122.
Saal HP, Delhaye BP, Rayhaun BC, Bensmaia SJ. Simulating tactile signals from the whole hand with millisecond precision. Proc Natl Acad Sci USA 114: E5693-E5702, 2017. doi:10.1073/pnas.1704856114.
Webber RM, Stanley GB. Nonlinear encoding of tactile patterns in the barrel cortex. J Neurophysiol 91: 2010-2022, 2004. doi:10.1152/jn.00906.2003.
Chung S, Ferster D. Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron 20: 1177-1189, 1998. doi:10.1016/s0896-6273(00)80498-5.
Chung S, Li X, Nelson SB. Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34: 437-446, 2002. doi:10.1016/s0896-6273(02)00659-1.
Abbott LF, Varela JA, Sen K, Nelson SB. Synaptic depression and cortical gain control. Science 275: 220-224, 1997. doi:10.1126/science.275.5297.221.
Tsodyks MV, Markram H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94: 719-723, 1997 [Erratum in Proc Natl Acad Sci USA 94: 5495, 1997]. doi:10.1073/pnas.94.2.719.
Butovas S, Hormuzdi SG, Monyer H, Schwarz C. Effects of electrically coupled inhibitory networks on local neuronal responses to intracortical microstimulation. J Neurophysiol 96: 1227-1236, 2006. doi:10.1152/jn.01170.2005.
Webber RM, Stanley GB. Transient and steady-state dynamics of cortical adaptation. J Neurophysiol 95: 2923-2932, 2006. doi:10. 1152/jn.01188.2005.
Butovas S, Schwarz C. Spatiotemporal effects of microstimulation in rat neocortex: A parametric study using multielectrode recordings. J Neurophysiol 90: 3024-3039, 2003. doi:10.1152/jn.00245.2003