Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all)
Abstract :
[en] A detailed assessment of a low energy demand, 1.5 ∘C compatible pathway is provided for Europe from a bottom-up, country scale modelling perspective. The level of detail enables a clear representation of the potential of sufficiency measures. Results show that by 2050, 50% final energy demand reduction compared to 2019 is possible in Europe, with at least 40% of it attributable to various sufficiency measures across all sectors. This reduction enables a 77% renewable energy share in 2040 and 100% in 2050, with very limited need for imports from outside of Europe and no carbon sequestration technologies. Sufficiency enables increased fairness between countries through the convergence towards a more equitable share of energy service levels. Here we show, that without sufficiency measures, Europe misses the opportunity to transform energy demand leaving considerable pressure on supply side changes combined with unproven carbon removal technologies.
Disciplines :
Energy
Author, co-author :
Wiese, Frauke ; Department of Sustainable Energy Transition, Europa-Universität Flensburg, Flensburg, Germany. frauke.wiese@uni-flensburg.de
Taillard, Nicolas ; négaWatt Association, BP 16280 Alixan, 26958, VALENCE Cedex 9, France
Balembois, Emile ; négaWatt Association, BP 16280 Alixan, 26958, VALENCE Cedex 9, France
Best, Benjamin; City of Bonn, Climate Neutral Bonn 2035 Program Office, Bonn, Germany
Bourgeois, Stephane ; négaWatt Association, BP 16280 Alixan, 26958, VALENCE Cedex 9, France
Campos, José ; Department of Environmental and Landscape Geography, ELTE University, Budapest, Hungary
Cordroch, Luisa ; Department of Sustainable Energy Transition, Europa-Universität Flensburg, Flensburg, Germany
Djelali, Mathilde; négaWatt Association, BP 16280 Alixan, 26958, VALENCE Cedex 9, France
Gabert, Alexandre; négaWatt Association, BP 16280 Alixan, 26958, VALENCE Cedex 9, France
Jacob, Adrien ; négaWatt Association, BP 16280 Alixan, 26958, VALENCE Cedex 9, France
Johnson, Elliott; Sustainability Research Institute, University of Leeds, Leeds, UK
Meyer, Sébastien ; negaWatt Belgium, Rue du Blanc-Ry 163, Ottignies-Louvain-la-Neuve, 1342, Belgium ; Institute of Mechanics, Materials and Civil engineering, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Munkácsy, Béla ; Department of Environmental and Landscape Geography, ELTE University, Budapest, Hungary
Pagliano, Lorenzo ; Architecture and Urban Studies Department, Politecnico di Milano, Italy
Quoilin, Sylvain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Roscetti, Andrea ; Architecture and Urban Studies Department, Politecnico di Milano, Italy ; Università della Svizzera italiana, Accademia di Architettura, Architettura, Switzerland
Thema, Johannes ; Department of Sustainable Energy Transition, Europa-Universität Flensburg, Flensburg, Germany ; Energy, Transport and Climate Policy Division, Wuppertal Institute for Climate, Environment and Energy, Wuppertal, Germany
Thiran, Paolo ; Institute of Mechanics, Materials and Civil engineering, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Toledano, Adrien; négaWatt Association, BP 16280 Alixan, 26958, VALENCE Cedex 9, France
Vogel, Bendix; Department of Sustainable Energy Transition, Europa-Universität Flensburg, Flensburg, Germany ; Potsdam Institute for Climate Impact Research (PIK) e.V., Potsdam, Germany
Zell-Ziegler, Carina ; Department of Landscape Planning and Development, Technische Universität Berlin, Berlin, Germany ; Energy & Climate Division, Oeko-Institut, Berlin, Germany
Marignac, Yves ; négaWatt Association, BP 16280 Alixan, 26958, VALENCE Cedex 9, France
F.W, J.T., C.Z-Z. are funded by German Federal Ministry of Education and Research (BMBF), within the framework of the Strategy Research for Sustainability (FONA), as part of its Social-Ecological Research funding priority (grant numbers 01UU2004A, 01UU2004B, 01UU2004C). N.T., S.B., M.D., A.G., A.J., A.T. and Y.M. received funding in 2022 and 2023 for the CLEVER project from the European Climate Foundation (ECF) (grant number 2201-63204), from the Fondation pour le Progr\u00E8s de l\u2019Homme, from the endowment fund Watt For Change (grant number 21-49) and the French Agency for Ecological Transition (ADEME) (grant number 22ESD0042). B.M., J.C., S.M., A.R., L.P. and B.V. were in 2022 partly funded for the CLEVER project by the European Climate Foundation (ECF) (grant number 2201-63204). E.J. received funding from the Energy Demand Research Centre (EDRC) (UKRI grant award EP/Y010078/1). P.T. is funded by the Energy Transition Fund from FPS Economy, which represents the Belgian Minister of Energy, Environment and Sustainable Development. L.P. and A.R. received funding from the project FULFILL - Fundamental Decarbonisation Through Sufficiency By Lifestyle Changes, funded by the European Union\u2019s Horizon 2020 research and innovation programme (Grant Agreement No. 101003656). We acknowledge financial support by Land Schleswig-Holstein within the funding programme Open Access-Publikationsfonds.
L. Mundaca D. Ürge-Vorsatz C. Wilson Demand-side approaches for limiting global warming to 1.5 °C Energy Efficiency 2019 12 343 362 10.1007/s12053-018-9722-9
T. Hooper et al. Do energy scenarios pay sufficient attention to the environment? Lessons from the UK to support improved policy outcomes Energy Policy 2018 115 397 408 10.1016/j.enpol.2018.01.028
S. Pfenninger A. Hawkes J. Keirstead Energy systems modeling for twenty-first century energy challenges Renew. Sustain. Energy Rev. 2014 33 74–86 10.1016/j.rser.2014.02.003
F. Creutzig et al. Towards demand-side solutions for mitigating climate change Nat. Clim. Change 2018 8 260 263 2018NatCC..8.260C 3831565 10.1038/s41558-018-0121-1
F. Creutzig et al. Demand-side solutions to climate change mitigation consistent with high levels of well-being Nat. Clim. Change 2022 12 36 46 2022NatCC.12..36C 10.1038/s41558-021-01219-y
J. Jungell-Michelsson P. Heikkurinen Sufficiency: A systematic literature review Ecol. Econ. 2022 195 13 10.1016/j.ecolecon.2022.107380
Lage, J. Sufficiency and transformation-A semi-systematic literature review of notions of social change in different concepts of sufficiency. Front. Sustain. 3, 954660 (2022).
M. Sandberg Sufficiency transitions: A review of consumption changes for environmental sustainability J. Clean. Prod. 2021 293 16 10.1016/j.jclepro.2021.126097
N.D. Rao J. Min Decent Living Standards: Material Prerequisites for Human Wellbeing Soc. Indic. Res. 2018 138 225 244 10.1007/s11205-017-1650-0 29950752
J. Millward-Hopkins J.K. Steinberger N.D. Rao Y. Oswald Providing decent living with minimum energy: A global scenario Glob. Environ. Change 2020 65 102168 10.1016/j.gloenvcha.2020.102168
A. Grubler et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies Nat. Energy 2018 3 515 527 2018NatEn..3.515G 10.1038/s41560-018-0172-6
J. Barrett et al. Energy demand reduction options for meeting national zero-emission targets in the United Kingdom Nat. Energy 2022 7 726 735 10.1038/s41560-022-01057-y
IPCC. Climate Change 2021. The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf (2021).
Bourgeois, S. et al. Climate neutrality, Energy security and Sustainability: A pathway to bridge the gap through Sufficiency, Efficiency and Renewables. Association négawatt, https://clever-energy-scenario.eu/wp-content/uploads/2023/10/CLEVER_final-report.pdf (2023).
K. Richardson et al. Earth beyond six of nine planetary boundaries Sci. Adv. 2023 9 16 10.1126/sciadv.adh2458
M. Victoria E. Zeyen T. Brown Speed of technological transformations required in Europe to achieve different climate goals Joule 2022 6 1066 1086 10.1016/j.joule.2022.04.016
B. Pickering F. Lombardi S. Pfenninger Diversity of options to eliminate fossil fuels and reach carbon neutrality across the entire European energy system Joule 2022 6 1253 1276 10.1016/j.joule.2022.05.009 35784823 9220955
Agora Energiewende Breaking free from fossil gas - A new path to a climate-neutral Europe. https://static.agora-energiewende.de/fileadmin/Projekte/2021/2021_07_EU_GEXIT/A-EW_292_Breaking_free_WEB.pdf (2023).
European Commission. A Clean Planet for all. COM(2018) 773 final, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0773 (2018).
Günther, J., Lehmann, H., Nuss, P. & Purr, K. Resource-Efficient Pathways towards Greenhouse-Gas-Neutrality - RESCUE Summary Report. Umweltbundesamt, Dessau-Roßlau, https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/rescue_kurzfassung_eng.pdf (2019).
Association négawatt. La transition énergétique au cœur d’une transition sociétale. https://negawatt.org/IMG/pdf/synthese-scenario-negawatt-2022.pdf (2022).
Eurostat. Statistics Explained: Glossary: Final energy consumption. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Final_energy_consumption (2018).
Taillard, N., Bourgeois, S., Hadjur, H. & Balembois, É. Establishment of energy consumption convergence corridors to 2050 - Residential sector. https://clever-energy-scenario.eu/wp-content/uploads/2023/03/2210-Convergence-corridors-Residential.pdf (2022).
Toledano, A., Taillard, N., Bourgeois, S., Balembois, É. & Hadjur, H. Establishment of energy consumption convergence corridors to 2050 - Mobility sector. https://clever-energy-scenario.eu/wp-content/uploads/2023/03/2403-Convergence-corridors-Mobility.pdf (2023).
J. Popp Z. Lakner M. Harangi-Rákos M. Fári The effect of bioenergy expansion: Food, energy, and environment Renew. Sustain. Energy Rev. 2014 32 559 578 10.1016/j.rser.2014.01.056
J. Wang Y. Yang Y. Bentley X. Geng X. Liu Sustainability Assessment of Bioenergy from a Global Perspective: A Review Sustanability 2018 10 2739 10.3390/su10082739
K. Calvin et al. Bioenergy for climate change mitigation: Scale and sustainability GCB Bioenergy 2021 13 1346 1371 10.1111/gcbb.12863
I. Butnar O. Broad B. Solano Rodriguez P.E. Dodds The role of bioenergy for global deep decarbonization: CO2 removal or low-carbon energy? GCB Bioenergy 2020 12 198 212 10.1111/gcbb.12666
M. Eerma et al. The potential of behavioral changes to achieve a fully renewable energy system - A case study for Germany Renew. Sustain. Energy Transit. 2022 2 100028
M. Child C. Kemfert D. Bogdanov C. Breyer Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe Renew. Energy 2019 139 80 101 10.1016/j.renene.2019.02.077
A. Slameršak G. Kallis D.W. O’Neill Energy requirements and carbon emissions for a low-carbon energy transition Nat. Commun. 2022 13 2022NatCo.13.6932S 10.1038/s41467-022-33976-5 36376312 9663537
J. Millward-Hopkins E. Johnson Distributing less, redistributing more: Safe and just low-energy futures in the united kingdom Energy Res. Soc. Sci. 2023 95 102915 10.1016/j.erss.2022.102915
S. Pauliuk Decent living standards, prosperity, and excessive consumption in the lorenz curve Ecol. Econ. 2024 220 108161 10.1016/j.ecolecon.2024.108161
Kuhnhenn, K., Costa, L., Mahnke, E., Schneider, L. & Lange, S. A Societal Transformation Scenario for Staying Below 1.5 °C. 23, Heinrich Böll Stiftung & Konzeptwerk Neue Ökonomie, Berlin / Leipzig, https://www.boell.de/de/2020/12/09/societal-transformation-scenario-staying-below-15degc. (2020).
Eyre, N., Barrett, J., Bobrova, Y., Nolden, C. Rosenow, J. New times, new policies? Policies to change energy use in the context of zero carbon. eceee Summer Study Proceedings, https://www.eceee.org/library/conference:proceedings/eceee_Summer_Studies/2022/2-efficiency-and-beyond-innovative-energy-demand-policies/new-times-new-policies-policies-to-change-energy-use-in-the-context-of-zero-carbon/2022/2-043-22_Eyre.pdf/ (2022).
F. Wiese J. Thema L. Cordroch Strategies for climate neutrality. Lessons from a meta-analysis of German energy scenarios Renew. Sustain. Energy Transit. 2022 2 100015
C. Zell-Ziegler et al. Enough? The role of sufficiency in European energy and climate plans Energy Policy 2021 157 112483 10.1016/j.enpol.2021.112483
J. Lage et al. Citizens call for sufficiency and regulation - A comparison of European citizen assemblies and National Energy and Climate Plans Energy Res. Soc. Sci. 2023 104 1 14 10.1016/j.erss.2023.103254
Best, B. et al. Building a database for energy sufficiency policies [version 2; peer review: 2 approved]. F1000Res. 11, 229 (2022).
K.S. Rogge K. Reichardt Policy mixes for sustainability transitions: An extended concept and framework for analysis Res. Policy 2016 45 1620 1635 10.1016/j.respol.2016.04.004
Association négawatt. négaWatt scenario 2017-2050 - A blueprint for a succesfull energy transition in France. https://negawatt.org/IMG/pdf/181128_negawatt-scenario_eng_12p.pdf (2017).
IPCC. Climate Change 2022: Mitigation of Climate Change - Summary for Policymakers. Intergovernmental Panel on Climate Change (2022).
United Nations World Population Prospects 2022, https://population.un.org/wpp/Download/Standard/Population (2022).
ADEME & Partners. MURE database on energy efficiency measures of ODYSSEE-MURE. https://www.measures.odyssee-mure.eu/energy-efficiency-policies-database.html#/ (2022).
Toledano, A. et al. Establishment of energy consumption convergence corridors to 2050 - Industrial sector. https://clever-energy-scenario.eu/wp-content/uploads/2023/02/2206-Convergence-corridors-Industry.pdf (2022).
Rauzier, E. & Toulouse, E. The material impacts of an energy transition based on sufficiency, efficiency, and renewables. eceee Summer Study Proceedings 1343–1352, https://www.eceee.org/library/conference:proceedings/eceee_Summer_Studies/2022/9-deep-decarbonisation-of-industry/the-material-impacts-of-an-energy-transition-based-on-sufficiency-efficiency-and-renewables/ (2022).
IPCC. Buildings. In Climate Change 2022 - Mitigation of Climate Change, 953–1048, Cambridge University Press (2023).
Transport and Environment. Clean and lean: Battery metals demand from electrifying passenger transport. https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter09.pdf (2023).
European Commission, Directorate-General for Internal Market, E., Industry, SMEs, Grohol, M. & Veeh, C. Study on the critical raw materials for the EU 2023 - Final report. Publications Office of the European Union, https://data.europa.eu/doi/10.2873/725585 (2023).
Couturier, C., Charru, M., Djelali, M. & Balembois, É. Agriculture, forestry, other land-use changes and bioenergy (AFOLUB) Main assumptions and preliminary trajectory of the CLEVER scenario. https://clever-energy-scenario.eu/wp-content/uploads/2023/03/2303-CLEVER-AFOLUB-note.pdf (2022).
Fuchs, D. et al. Consumption Corridors: Living a Good Life within Sustainable Limits. Routledge, New York (2021).
Eurostat. Demographic balances and indicators by type of projection, https://ec.europa.eu/eurostat/databrowser/view/PROJ_19NDBI__custom_160151/default/table?lang=en (2020).
ESABCC. Scientific advice for the determination of an EU-wide 2040 climate target, https://doi.org/10.2800/609405 (2023).
F. Magnolo et al. The Role of Sequential Cropping and Biogasdoneright™ in Enhancing the Sustainability of Agricultural Systems in Europe Agronomy 2021 11 2102 10.3390/agronomy11112102
Ruiz Castello, P. et al. ENSPRESO - an open data, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials. Publisher: European Commission, https://publications.jrc.ec.europa.eu/repository/handle/JRC116900 (2019).
D. Tong et al. Geophysical constraints on the reliability of solar and wind power worldwide Nat. Commun. 2021 12 2021NatCo.12.6146T 10.1038/s41467-021-26355-z 34686663 8536784