[en] In clinical practice, the glomerular filtration rate (GFR), a measurement of kidney functioning, is normally calculated using equations, such as the European Kidney Function Consortium (EKFC) equation. Despite being the most general equation, EKFC, just like previously proposed approaches, can still struggle to achieve satisfactory performance, limiting its clinical applicability. As a possible solution, recently machine learning (ML) has been investigated to improve GFR prediction, nonetheless the literature still lacks a general and multi-center study. Using a dataset with 19,629 patients from 13 cohorts, we investigate if ML can improve GFR prediction in comparison to EKFC. More specifically, we compare diverse ML methods, which were allowed to use age, sex, serum creatinine, cystatin C, height, weight and BMI as features, in internal and external cohorts against EKFC. The results show that the most performing ML method, random forest (RF), and EKFC are very competitive where RF and EKFC achieved respectively P10 and P30 values of 0.45 (95% CI 0.44;0.46) and 0.89 (95% CI 0.88;0.90), whereas EKFC yielded 0.44 (95% CI 0.43; 0.44) and 0.89 (95% CI 0.88; 0.90), considering the entire cohort. Small differences were, however, observed in patients younger than 12 years where RF slightly outperformed EKFC.
Disciplines :
Urology & nephrology
Author, co-author :
Nakano, Felipe Kenji; Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium. felipekenji.nakano@kuleuven.be ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium. felipekenji.nakano@kuleuven.be
Åkesson, Anna; Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden ; Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
de Boer, Jasper; Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium
Dedja, Klest; Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium
D'hondt, Robbe; Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium
Haredasht, Fateme Nateghi; Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium
Björk, Jonas; Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden ; Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
Courbebaisse, Marie; Physiology Department, Georges Pompidou European Hospital, Assistance Publique Hôpitaux de Paris, INSERM U1151-CNRS UMR8253, Paris Descartes University, Paris, France
Couzi, Lionel; CNRS-UMR 5164 Immuno ConcEpT, CHU de Bordeaux, Nephrologie-Transplantation-Dialyse, Université de Bordeaux, Bordeaux, France
Ebert, Natalie; Institute of Public Health, Charité Universitätsmedizin Berlin, Berlin, Germany
Eriksen, Björn O; Metabolic and Renal Research Group, UiT the Arctic University of Norway, Tromsö, Norway
Dalton, R Neil; The Wellchild Laboratory, Evelina London Children's Hospital, London, UK
Derain-Dubourg, Laurence; Néphrologie, Dialyse, Hypertension et Exploration Fonctionnelle Rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, France
Gaillard, Francois; Renal Transplantation Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
Garrouste, Cyril; Department of Nephrology, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
Grubb, Anders; Department of Clinical Chemistry, Skåne University Hospital, Lund University, Lund, Sweden
Hansson, Magnus; Function Area Clinical Chemistry, Karolinska University Laboratory, Karolinska Institute, Karolinska University Hospital Huddinge and Department of Laboratory Medicine, Stockholm, Sweden
Kamar, Nassim; Department of Nephrology, Dialysis and Organ Transplantation, CHU Rangueil, INSERM U1043, IFR-BMT, University Paul Sabatier, Toulouse, France
Legendre, Christophe; Hôpital Necker, AP-HP and Université Paris Descartes, Paris, France
Littmann, Karin; Institute om Medicine Huddinge (Med H), Karolinska Institute, Solna, Sweden
Mariat, Christophe; Service de Néphrologie, Dialyse et Transplantation Rénale, Hôpital Nord, CHU de Saint-Etienne, Saint-Priest-en-Jarez, France
Melsom, Toralf; Metabolic and Renal Research Group, UiT the Arctic University of Norway, Tromsö, Norway
Rostaing, Lionel; Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, Hôpital Michallon, CHU Grenoble-Alpes, Tronche, France
Rule, Andrew D; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
Schaeffner, Elke; Institute of Public Health, Charité Universitätsmedizin Berlin, Berlin, Germany
Sundin, Per-Ola; Karla Healthcare Centre, Faculty of Medicine and Health, Örebro University, 70182, Örebro, SE, Sweden
Bökenkamp, Arend; Department of Paediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Berg, Ulla; Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
Åsling-Monemi, Kajsa; Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
Selistre, Luciano; Mestrado Em Ciências da Saúde-Universidade Caxias do Sul Foundation CAPES, Caxias Do Sul, Brazil
Larsson, Anders; Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
Nyman, Ulf; Department of Translational Medicine, Division of Medical Radiology, Lund University, Malmö, Sweden
Lanot, Antoine; Normandie Université, Unicaen, CHU de Caen Normandie, Néphrologie, Caen, France ; Normandie Université, Unicaen, UFR de Médecine, 2 Rue Des Rochambelles, Caen, France ; ANTICIPE U1086 INSERM-UCN, Centre François Baclesse, Caen, France
Pottel, Hans ; Université de Liège - ULiège > Département des sciences cliniques ; Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
Delanaye, Pierre ; Université de Liège - ULiège > Département des sciences cliniques ; Department of Nephrology-Dialysis-Apheresis, Hopital Universitaire Caremeau, Nimes, France
Vens, Celine; Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium
L.A. Inker N.D. Eneanya J. Coresh H. Tighiouart D. Wang Y. Sang et al. New creatinine- and cystatin c-based equations to estimate GFR without race N Engl. J. Med. 2021 385 1737 1749 1:CAS:528:DC%2BB3MXisVyrurjK 10.1056/NEJMoa2102953 34554658 8822996
H. Pottel J. Björk M. Courbebaisse L. Couzi N. Ebert B.O. Eriksen et al. Development and validation of a modified full age spectrum creatinine-based equation to estimate glomerular filtration rate Ann. Int. Med. 2021 174 183 191 10.7326/M20-4366 33166224
H. Pottel J. Björk A.D. Rule N. Ebert B.O. Eriksen L. Dubourg et al. Cystatin C-based equation to estimate GFR without the inclusion of race and sex N Engl. J. Med. 2023 388 333 343 1:CAS:528:DC%2BB3sXisFGhur4%3D 10.1056/NEJMoa2203769 36720134
P.E. Stevens S.B. Ahmed J.J. Carrero B. Foster A. Francis R.K. Hall et al. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease Kidney Int. 2024 105 S117 314 10.1016/j.kint.2023.10.018
G.J. Schwartz A. Muñoz M.F. Schneider R.H. Mak F. Kaskel B.A.F.S. Warady New equations to estimate GFR in children with CKD J. Am. Soc. Nephrol. 2009 20 629 637 10.1681/ASN.2008030287 19158356 2653687
H. Pottel J. Björk A. Bökenkamp U. Berg K. Åsling-Monemi L. Selistre et al. Estimating glomerular filtration rate at the transition from pediatric to adult care Kidney Int. 2019 95 1234 1243 10.1016/j.kint.2018.12.020 30922665
P. Delanaye E. Cavalier T. Stehlé H. Pottel Glomerular filtration rate estimation in adults: myths and promises Nephron. 2024 148 6 408 414 1:CAS:528:DC%2BB2cXht1GisbrL 10.1159/000536243 38219717
P. Delanaye L. Derain-Dubourg et al. Estimating glomerular filtration in young people Clin. Kidney J. 2024 10.1093/ckj/sfae261 39420994 11418036
P. Delanaye H. Pottel E. Cavalier M. Flamant T. Stehlé C. Mariat Diagnostic standard: Assessing glomerular filtration rate Nephrol. Dial. Transp. 2023 39 7 1088 1096 10.1093/ndt/gfad241
F.P. Schena V.W. Anelli D.I. Abbrescia T. Di Noia Prediction of chronic kidney disease and its progression by artificial intelligence algorithms J. Nephrol. 2022 35 1953 71 10.1007/s40620-022-01302-3 35543912
Z. Fan Q. Yang Z. Xu K. Sun M. Yang R. Yin et al. Construct a classification decision tree model to select the optimal equation for estimating glomerular filtration rate and estimate it more accurately Sci. Rep. [Internet]. 2022 12 1 13 1:CAS:528:DC%2BB38XitlWms77O 10.1038/s41598-022-19185-6
H. Peng H. Zhu C.W.A. Ieong T. Tao T.Y. Tsai Z. Liu A two-stage neural network prediction of chronic kidney disease IET Syst. Biol. 2021 15 163 171 10.1049/syb2.12031 34185395 8675857
V. Singh V.K. Asari R. Rajasekaran A deep neural network for early detection and prediction of chronic kidney disease Diagnostics. 2022 12 1 22 10.3390/diagnostics12010116
J.B. Woillard C. Salmon Gandonnière A. Destere S. Ehrmann H. Merdji A. Mathonnet et al. A machine learning approach to estimate the glomerular filtration rate in intensive care unit patients based on plasma Iohexol concentrations and covariates Clin. Pharmacok. [Internet]. 2021 60 223 33 1:CAS:528:DC%2BB3cXhs1OjurzE 10.1007/s40262-020-00927-6
I. Soveri U.B. Berg J. Björk C.G. Elinder A. Grubb I. Mejare et al. Measuring GFR: A systematic review Am. J. Kidney Dis. 2014 64 411 424 10.1053/j.ajkd.2014.04.010 24840668
P. Delanaye N. Ebert T. Melsom F. Gaspari C. Mariat E. Cavalier et al. Iohexol plasma clearance for measuring glomerular fi ltration rate in clinical practice and research: A review. Part 1: How to measure glomerular fi ltration rate with Iohexol? Clin. Kidney J. 2016 9 1 18
P. Delanaye T. Melsom N. Ebert S.-E. Bäck C. Mariat E. Cavalier et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: A review. Part 2: Why to measure glomerular filtration rate with Iohexol? Clin. Kidney J. 2016 9 700 4 1:CAS:528:DC%2BC1cXlsVSmsbo%3D 10.1093/ckj/sfw071 27679716 5036903
L. Breiman RFRSF: Employee turnover prediction based on random forests and survival analysis Mach. Learn. 2001 45 5 32 10.1023/A:1010933404324
D. Kocev C. Vens J. Struyf S. Dzeroski Ensembles for predicting structured outputs Patt. Recognit. 2013 46 817 33 2013PatRe.46.817K 10.1016/j.patcog.2012.09.023
T. Chen C. Guestrin XGBoost: A scalable tree boosting system Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2016 13 17 785 94
A. Early D. Miskulin E.J. Lamb A.S. Levey K. Uhlig Annals of internal medicine review estimating equations for glomerular filtration rate in the era Ann. Int. Med. 2012 156 785 95 10.7326/0003-4819-156-11-201203200-00391
Lundberg, S. & Su-In, L. A unified approach to interpreting model predictions Scott. Adv. Neural Inf. Process Syst. 30 (2017).
H. Wang B. Bowe Z. Cui H. Yang S.J. Swamidass Y. Xie et al. A deep learning approach for the estimation of glomerular filtration rate IEEE Trans. Nanobiosci. 2022 21 560 569 10.1109/TNB.2022.3147957