Article (Scientific journals)
Comparison between the EKFC-equation and machine learning models to predict Glomerular Filtration Rate.
Nakano, Felipe Kenji; Åkesson, Anna; de Boer, Jasper et al.
2024In Scientific Reports, 14 (1), p. 26383
Peer Reviewed verified by ORBi
 

Files


Full Text
NakanoSciRep2024.pdf
Author postprint (2.62 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Cystatin C; Creatinine; Humans; Male; Female; Middle Aged; Aged; Cystatin C/blood; Adult; Creatinine/blood; Kidney Function Tests/methods; Glomerular Filtration Rate; Machine Learning
Abstract :
[en] In clinical practice, the glomerular filtration rate (GFR), a measurement of kidney functioning, is normally calculated using equations, such as the European Kidney Function Consortium (EKFC) equation. Despite being the most general equation, EKFC, just like previously proposed approaches, can still struggle to achieve satisfactory performance, limiting its clinical applicability. As a possible solution, recently machine learning (ML) has been investigated to improve GFR prediction, nonetheless the literature still lacks a general and multi-center study. Using a dataset with 19,629 patients from 13 cohorts, we investigate if ML can improve GFR prediction in comparison to EKFC. More specifically, we compare diverse ML methods, which were allowed to use age, sex, serum creatinine, cystatin C, height, weight and BMI as features, in internal and external cohorts against EKFC. The results show that the most performing ML method, random forest (RF), and EKFC are very competitive where RF and EKFC achieved respectively P10 and P30 values of 0.45 (95% CI 0.44;0.46) and 0.89 (95% CI 0.88;0.90), whereas EKFC yielded 0.44 (95% CI 0.43; 0.44) and 0.89 (95% CI 0.88; 0.90), considering the entire cohort. Small differences were, however, observed in patients younger than 12 years where RF slightly outperformed EKFC.
Disciplines :
Urology & nephrology
Author, co-author :
Nakano, Felipe Kenji;  Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium. felipekenji.nakano@kuleuven.be ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium. felipekenji.nakano@kuleuven.be
Åkesson, Anna;  Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden ; Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
de Boer, Jasper;  Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium
Dedja, Klest;  Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium
D'hondt, Robbe;  Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium
Haredasht, Fateme Nateghi;  Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium
Björk, Jonas;  Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden ; Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
Courbebaisse, Marie;  Physiology Department, Georges Pompidou European Hospital, Assistance Publique Hôpitaux de Paris, INSERM U1151-CNRS UMR8253, Paris Descartes University, Paris, France
Couzi, Lionel;  CNRS-UMR 5164 Immuno ConcEpT, CHU de Bordeaux, Nephrologie-Transplantation-Dialyse, Université de Bordeaux, Bordeaux, France
Ebert, Natalie;  Institute of Public Health, Charité Universitätsmedizin Berlin, Berlin, Germany
Eriksen, Björn O;  Metabolic and Renal Research Group, UiT the Arctic University of Norway, Tromsö, Norway
Dalton, R Neil;  The Wellchild Laboratory, Evelina London Children's Hospital, London, UK
Derain-Dubourg, Laurence;  Néphrologie, Dialyse, Hypertension et Exploration Fonctionnelle Rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, France
Gaillard, Francois;  Renal Transplantation Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
Garrouste, Cyril;  Department of Nephrology, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
Grubb, Anders;  Department of Clinical Chemistry, Skåne University Hospital, Lund University, Lund, Sweden
Jacquemont, Lola;  Renal Transplantation Department, CHU Nantes, Nantes University, Nantes, France
Hansson, Magnus;  Function Area Clinical Chemistry, Karolinska University Laboratory, Karolinska Institute, Karolinska University Hospital Huddinge and Department of Laboratory Medicine, Stockholm, Sweden
Kamar, Nassim;  Department of Nephrology, Dialysis and Organ Transplantation, CHU Rangueil, INSERM U1043, IFR-BMT, University Paul Sabatier, Toulouse, France
Legendre, Christophe;  Hôpital Necker, AP-HP and Université Paris Descartes, Paris, France
Littmann, Karin;  Institute om Medicine Huddinge (Med H), Karolinska Institute, Solna, Sweden
Mariat, Christophe;  Service de Néphrologie, Dialyse et Transplantation Rénale, Hôpital Nord, CHU de Saint-Etienne, Saint-Priest-en-Jarez, France
Melsom, Toralf;  Metabolic and Renal Research Group, UiT the Arctic University of Norway, Tromsö, Norway
Rostaing, Lionel;  Service de Néphrologie, Hémodialyse, Aphérèses et Transplantation Rénale, Hôpital Michallon, CHU Grenoble-Alpes, Tronche, France
Rule, Andrew D;  Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
Schaeffner, Elke;  Institute of Public Health, Charité Universitätsmedizin Berlin, Berlin, Germany
Sundin, Per-Ola;  Karla Healthcare Centre, Faculty of Medicine and Health, Örebro University, 70182, Örebro, SE, Sweden
Bökenkamp, Arend;  Department of Paediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Berg, Ulla;  Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
Åsling-Monemi, Kajsa;  Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
Selistre, Luciano;  Mestrado Em Ciências da Saúde-Universidade Caxias do Sul Foundation CAPES, Caxias Do Sul, Brazil
Larsson, Anders;  Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
Nyman, Ulf;  Department of Translational Medicine, Division of Medical Radiology, Lund University, Malmö, Sweden
Lanot, Antoine;  Normandie Université, Unicaen, CHU de Caen Normandie, Néphrologie, Caen, France ; Normandie Université, Unicaen, UFR de Médecine, 2 Rue Des Rochambelles, Caen, France ; ANTICIPE U1086 INSERM-UCN, Centre François Baclesse, Caen, France
Pottel, Hans ;  Université de Liège - ULiège > Département des sciences cliniques ; Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
Delanaye, Pierre  ;  Université de Liège - ULiège > Département des sciences cliniques ; Department of Nephrology-Dialysis-Apheresis, Hopital Universitaire Caremeau, Nimes, France
Vens, Celine;  Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium ; Itec, Imec Research Group at KU Leuven, Kortrijk, Belgium
More authors (27 more) Less
Language :
English
Title :
Comparison between the EKFC-equation and machine learning models to predict Glomerular Filtration Rate.
Publication date :
02 November 2024
Journal title :
Scientific Reports
eISSN :
2045-2322
Publisher :
Springer Science and Business Media LLC, England
Volume :
14
Issue :
1
Pages :
26383
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 04 November 2024

Statistics


Number of views
7 (0 by ULiège)
Number of downloads
2 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi