[en] Vacuum ultraviolet (UV) light at a well-defined wavelength excites N2 to different vibronic levels of the singlet electronic states that strongly interact through nonadiabatic coupling. Each discrete vibronic state acts as an isolated resonance: it is weakly coupled to a dissociative continuum of triplet states via a weak spin-orbit coupling. Here, we seek to compare this decay to that of a coherent superposition of bound singlets pumped by a broad in energy - ultrafast pulse. Despite the strong intersinglets and intertriplets nonadiabatic couplings, the coherent set of states decays as a mixture of the isolated vibronic states with essentially their individual lifetimes as determined separately in a sharp wavelength excitation. The vibrational quantum number of the vibronic states is a nearly good one when the spin-orbit coupling is as weak as is the case for N2. Numerically converged dynamical computations valid for longer times show that for nonrotating molecules the individual vibronic resonances overlap and interfere only upon an artificially order of magnitude increase of the strength of the spin-orbit coupling. The resonances strongly overlap only at an even stronger coupling to the dissociative continuum.
Disciplines :
Chemistry
Author, co-author :
Gelfand, Natalia ; The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
Komarova, Ksenia ; The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique ; The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
Levine, Raphael D. ; The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel ; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, United States ; Department of Chemistry and Biochemistry, University of California, Los Angeles, United States
Language :
English
Title :
Photodissociation via weak intersystem crossing: Incoherent versus coherent excited-state nonadiabatic dynamics in N2
F.R.S.-FNRS - Fonds de la Recherche Scientifique NSF - National Science Foundation BSF - United States-Israel Binational Science Foundation
Funding number :
2019722; T0205.20.
Funding text :
The authors thank the referees for their critical comments and fruitful suggestions. The authors acknowledge financial support by the US–Israel Grant No. 2019722 NSF–BSF Astronomy and Astrophysics. F.R. acknowledges the support of the Fonds National de la Recherche (F.R.S.-FNRS, Belgium), Grant No. T0205.20.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
W. S. Warren, J. B. Murdoch, and A. Pines, J. Magn. Reson. 60, 236 (1984).
W. S. Warren, D. P. Weitekamp, and A. Pines, J. Chem. Phys. 73, 2084 (1980) 10.1063/1.440403.
T. Den, H. M. Frey, P. M. Felker, and S. Leutwyler, J. Chem. Phys. 143, 144306 (2015) 10.1063/1.4932602.
P. Benharash, M. J. Gleason, and P. M. Felker, J. Phys. Chem. A 103, 1442 (1999) 10.1021/jp984636c.
S. D. Chao, H. L. Selzle, H. J. Neusser, E. W. Schlag, L. Yao, and S. H. Lin, Z. Phys. Chem. 221, 633 (2007) 10.1524/zpch.2007.221.5.633.
A. Held and E. W. Schlag, Acc. Chem. Res. 31, 467 (1998) 10.1021/ar9702987.
J. Zheng, K. Kwak, and M. D. Fayer, Acc. Chem Res 40, 75 (2007) 10.1021/ar068010d.
D. W. McCamant, P. Kukura, and R. A. Mathies, J. Phys. Chem. B 109, 10449 (2005) 10.1021/jp050095x.
A. H. Zewail, Angew Chem. Int. Ed. 40, 4371 (2001) 10.1002/1521-3773(20011203)40:23%3C4371::AID-ANIE4371%3E3.0.CO;2-I.
K. B. Moller, N. E. Henriksen, and A. H. Zewail, J. Chem. Phys. 113, 10477 (2000) 10.1063/1.1323729.
M. Bixon, J. Jortner, and Y. Dothan, Mol. Phys. 17, 109 (1969) 10.1080/00268976900100861.
E. R. Warrick, J. E. Baekhoj, W. Cao, A. P. Fidler, F. Jensen, L. B. Madsen, S. R. Leone, and D. M. Neumark, Chem. Phys. Lett. 683, 408 (2017) 10.1016/j.cplett.2017.02.013.
E. R. Warrick, W. Cao, D. M. Neumark, and S. R. Leone, J. Phys. Chem. A 120, 3165 (2016) 10.1021/acs.jpca.5b11570.
E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, Nature (London) 466, 739 (2010) 10.1038/nature09212.
K. G. Komarova, F. Remacle, and R. D. Levine, J. Chem. Phys. 151, 114308 (2019) 10.1063/1.5118990.
J. S. Ajay, K. G. Komarova, S. Van den Wildenberg, F. Remacle, and R. D. Levine, in RSC Theoretical and Computational Chemistry, Series 2018, edited by M. J. J. Vrakking (The Royal Society of Chemistry, Cambridge, UK, 2018), p. 308.
B. R. Lewis, A. N. Heays, S. T. Gibson, H. Lefebvre-Brion, and R. Lefebvre, J. Chem. Phys. 129, 164306 (2008) 10.1063/1.2990656.
H. Lefebvre-Brion and B. R. Lewis, Mol. Phys. 105, 1625 (2007) 10.1080/00268970701390180.
M. Lucchini, K. Kim, F. Calegari, F. Kelkensberg, W. Siu, G. Sansone, M. J. J. Vrakking, M. Hochlaf, and M. Nisoli, Phys. Rev. A 86, 043404 (2012) 10.1103/PhysRevA.86.043404.
D. Spelsberg and W. Meyer, J. Chem. Phys. 115, 6438 (2001) 10.1063/1.1400139.
W. C. Ermler, A. D. Mclean, and R. S. Mulliken, J. Phys. Chem.-US 86, 1305 (1982) 10.1021/j100397a019.
J. S. Ajay, K. G. Komarova, F. Remacle, and R. D. Levine, Proc. Natl. Acad. Sci. USA 115, 5890 (2018) 10.1073/pnas.1804455115.
A. R. Beck, D. M. Neumark, and S. R. Leone, Chem. Phys. Lett. 624, 119 (2015) 10.1016/j.cplett.2014.12.048.
R. D. Levine, Quantum Mechanics of Molecular Rate Processes (Dover Publications, Oxford, 1969).
F. Remacle, M. Munster, V. B. Pavlov-Verevkin, and M. Desouter-Lecomte, Phys. Lett. A 145, 265 (1990) 10.1016/0375-9601(90)90361-Q.
F. Remacle and R. D. Levine, Mol. Phys. 87, 899 (1996) 10.1080/00268979600100611.
J. P. Sprengers, A. Johansson, A. L'Huillier, C. G. Wahlstrom, B. R. Lewis, and W. Ubachs, Chem. Phys. Lett. 389, 348 (2004) 10.1016/j.cplett.2004.03.116.
M. O. Vieitez, T. I. Ivanov, W. Ubachs, B. R. Lewis, and C. A. de Lange, J. Mol. Liq. 141, 110 (2008) 10.1016/j.molliq.2008.01.014.
N. Gelfand, K. Komarova, F. Remacle, and R. D. Levine, Astrophys. J. 948, 58 (2023) 10.3847/1538-4357/acbef8.
T. Grinev and P. Brumer, J. Chem. Phys. 143, 244313 (2015) 10.1063/1.4938028.
L. A. Pachon and P. Brumer, Phys. Rev. A 87, 022106 (2013) 10.1103/PhysRevA.87.022106.
F. Fassioli, A. Olaya-Castro, and G. D. Scholes, J. Phys. Chem. Lett. 3, 3136 (2012) 10.1021/jz3010317.
A. Chenu, A. M. Brańczyk, G. D. Scholes, and J. E. Sipe, Phys. Rev. Lett. 114, 213601 (2015) 10.1103/PhysRevLett.114.213601.
P. Jiang, L. Y. Lu, M. Liu, and H. Gao, Phys. Chem. Chem. Phys. 24, 11544 (2022) 10.1039/D2CP01148D.
M. Liu, P. Jiang, L. Y. Lu, T. H. Yin, L. Y. Ma, M. Cheng, Q. Z. Yin, and H. Gao, Astrophys. J. 923, 196 (2021) 10.3847/1538-4357/ac2f97.
M. Liu, P. Jiang, M. Cheng, and H. Gao, J. Chem. Phys. 155, 234305 (2021) 10.1063/5.0072604.
H. Lefebvre-Brion and R. W. Field, The Spectra and Dynamics of Diatomic Molecules (Academic Press, San Diego, 2004), p. 786.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevA.108.053116 for additional figures and movie show the singlets' and triplets' eigenstate compositions and their populations.
N. Gelfand, K. Komarova, F. Remacle, and R. D. Levine, J. Chem. Phys. 158, 164302 (2023) 10.1063/5.0148798.
P. J. Knowles and H. J. Werner, Chem. Phys. Lett. 115, 259 (1985) 10.1016/0009-2614(85)80025-7.
H. J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985) 10.1063/1.448627.
D. A. Kreplin, P. J. Knowles, and H. J. Werner, J. Chem. Phys. 150, 194106 (2019) 10.1063/1.5094644.
P. J. Knowles and H. J. Werner, Chem. Phys. Lett. 145, 514 (1988) 10.1016/0009-2614(88)87412-8.
H. J. Werner, B. Follmeg, and M. H. Alexander, J. Chem. Phys. 89, 3139 (1988) 10.1063/1.454971.
D. Simah, B. Hartke, and H.-J. Werner, J. Chem. Phys. 111, 4523 (1999) 10.1063/1.479214.
A. Berning, M. Schweizer, H.-J. Werner, P. J. Knowles, and P. Palmieri, Mol. Phys. 98, 1823 (2000) 10.1080/00268970009483386.
H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schutz, P. Celani, W. Gyorffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, MOLPRO, a package of ab initio programs (2015).
A. Hofmann and R. de Vivie-Riedle, Chem. Phys. Lett. 346, 299 (2001) 10.1016/S0009-2614(01)00922-8.
F. T. Smith, Phys. Rev. 179, 111 (1969) 10.1103/PhysRev.179.111.
M. Baer, Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections (Wiley, Hoboken, NJ, 2006), pp. 26-57.
T. Pacher, L. S. Cederbaum, and H. Köppel, Advances in Chemical Physics (Wiley, New York, 1993), Vol. 84, p. 293.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 1996).
H. Oertel, M. Kratzat, J. Imschweiler, and T. Noll, Chem. Phys. Lett. 82, 552 (1981) 10.1016/0009-2614(81)85439-5.
H. Helm, I. Hazell, and N. Bjerre, Phys. Rev. A 48, 2762 (1993) 10.1103/PhysRevA.48.2762.
A. N. Heays, B. R. Lewis, G. Stark, K. Yoshino, P. L. Smith, K. P. Huber, and K. Ito, J. Chem. Phys. 131, 194308 (2009) 10.1063/1.3257690.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.