[en] Attopulses have an energy bandwidth broad enough to coherently excite several electronic states of molecules. Towards the control of chemical reactivity by attopulses we derive the quantum mechanical expression for the force exerted on the nuclei in such a vibronic wave packet both during and after the exciting pulse. Tuning the pulse parameters allows accessing specific electronic coherences that determine the force strength and direction during and after the pulse. Following the pulse, the force due to the non adiabatic interactions accelerates or slows down the motion of the vibronic wave packet on the excited electronic states and its sign controls the direction of population transfer. Computational results for the LiH and LiT molecules and the probing by the emission dipole are discussed.
Levine, R.D.; Fritz Haber Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel ; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, United States ; Department of Chemistry and Biochemistry, University of California, Los Angeles, United States
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique ; Fritz Haber Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
Language :
English
Title :
Electronic coherences built by an attopulse control the forces on the nuclei
Publication date :
12 July 2024
Journal title :
Journal of Physics : B Atomic Molecular and Optical Physics
F.R.S.-FNRS - Fonds de la Recherche Scientifique COST - European Cooperation in Science and Technology
Funding number :
T0205.20; CA18222
Funding text :
The authors acknowledge support from the COST action ATTOCHEM (CA18222). F R and M C G acknowledge the support of the Fonds National de la Recherche (F.R.S.-FNRS, Belgium), #T0205.20, and of the action of concerted research MECHANOCHEM (ARC 19/23-20, ULiege). Computational resources have been provided by the Consortium des Equipements de Calcul Intensif (CECI), funded by the F.R.S.-FNRS under Grant # 2.5020.11.
Krausz F Ivanov M 2009 Rev. Mod. Phys. 81 163 234 163-234 10.1103/RevModPhys.81.163
Nisoli M Decleva P Calegari F Palacios A Martín F 2017 Chem. Rev. 117 10760 825 10760-825 10.1021/acs.chemrev.6b00453
Borrego-Varillas R Lucchini M Nisoli M 2022 Rep. Prog. Phys. 85 066401 10.1088/1361-6633/ac5e7f
Remacle F Levine R D 2006 Proc. Natl Acad. Sci. USA 103 6793 8 6793-8 10.1073/pnas.0601855103
Calegari F et al 2014 Science 346 336 9 336-9 10.1126/science.1254061
Li H et al 2015 Phys. Rev. Lett. 114 123004 10.1103/PhysRevLett.114.123004
Kraus P M et al 2015 Science 350 790 5 790-5 10.1126/science.aab2160
Remacle F Levine R D Ratner M A 1998 Chem. Phys. Lett. 285 25 33 25-33 10.1016/S0009-2614(97)01314-6
Remacle F Levine R D Schlag E W Weinkauf R 1999 J. Phys. Chem. A 103 10149 58 10149-58 10.1021/jp991853k
Cederbaum L S Zobeley J 1999 Chem. Phys. Lett. 307 205 10 205-10 10.1016/S0009-2614(99)00508-4
Breidbach J Cederbaum L S 2003 J. Chem. Phys. 118 3983 96 3983-96 10.1063/1.1540618
Kuleff A I Cederbaum L S 2007 Chem. Phys. 338 320 8 320-8 10.1016/j.chemphys.2007.04.012
Muskatel H B Remacle F Levine R D 2009 Phys. Scr. 80 048101 7 048101-7 10.1088/0031-8949/80/04/048101
Remacle F Nest M Levine R D 2007 Phys. Rev. Lett. 99 183902 10.1103/PhysRevLett.99.183902
Valentini A van den Wildenberg S Remacle F 2020 Phys. Chem. Chem. Phys. 22 22302 13 22302-13 10.1039/D0CP03435E
van den Wildenberg S Mignolet B Levine R D Remacle F 2019 J. Chem. Phys. 151 134310 10.1063/1.5116250
Nikodem A Levine R D Remacle F 2017 Phys. Rev. A 95 053404 10.1103/PhysRevA.95.053404
Koll L-M Maikowski L Drescher L Witting T Vrakking M J J 2022 Phys. Rev. Lett. 128 043201 10.1103/PhysRevLett.128.043201
Blavier M Levine R D Remacle F 2022 Phys. Chem. Chem. Phys. 24 17516 25 17516-25 10.1039/D2CP01440H
Nabekawa Y Midorikawa K 2023 Phys. Rev. Res. 5 033083 10.1103/PhysRevResearch.5.033083
Kling M F von den Hoff P Znakovskaya I de Vivie-riedle R 2013 Phys. Chem. Chem. Phys. 15 9448 67 9448-67 10.1039/c3cp50591j
Kling N G et al 2013 Phys. Rev. Lett. 111 163004 10.1103/PhysRevLett.111.163004
Smith F T 1969 Phys. Rev. 179 111 23 111-23 10.1103/PhysRev.179.111
Baer M 2006 Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections Wiley
Pacher T Mead C A Cederbaum L S Köppel H 1989 J. Chem. Phys. 91 7057 62 7057-62 10.1063/1.457323
Nijjar P Jankowska J Prezhdo O V 2019 J. Chem. Phys. 150 204124 10.1063/1.5095810
Doltsinis N L 2006 Molecular dynamics beyond the Born-Oppenheimer approximation: mixed quantum-classical approaches Computational Nanoscience: Do It Yourself! Grotendorst J Blügel S Marx D John von Neuman Institute for Computing
Subotnik J E 2010 J. Chem. Phys. 132 134112 10.1063/1.3314248
Jayantha S A Komarova K G Wildenberg S V D Remacle F Levine R D 2018 AttoPhotoChemistry: coherent electronic dynamics and nuclear motion Attosecond Molecular Dynamics vol 13 Vrakking M J J Lepine F Royal Society of Chemistry 308 47 308-47
Ghafur O Rouzee A Gijsbertsen A Siu W K Stolte S Vrakking M J J 2009 Nat. Phys. 5 289 93 289-93 10.1038/nphys1225
Kraus P M Baykusheva D Wörner H J 2014 Phys. Rev. Lett. 113 023001 10.1103/PhysRevLett.113.023001
Frohnmeyer T Baumert T 2000 Appl. Phys. B 71 259 66 259-66 10.1007/s003400000350
Ergler T Rudenko A Feuerstein B Zrost K Schröter C D Moshammer R Ullrich J 2006 Phys. Rev. Lett. 97 193001 10.1103/PhysRevLett.97.193001
Thumm U Niederhausen T Feuerstein B 2008 Phys. Rev. A 77 063401 10.1103/PhysRevA.77.063401
Manz J Pérez-Torres J F Yang Y 2013 Phys. Rev. Lett. 111 153004 10.1103/PhysRevLett.111.153004
Pérez-Torres J F 2015 Phys. Rev. A 91 022510 10.1103/PhysRevA.91.022510
Hermann G Paulus B Pérez-Torres J F Pohl V 2014 Phys. Rev. A 89 052504 10.1103/PhysRevA.89.052504
Paulus B Pérez-Torres J F Stemmle C 2016 Phys. Rev. A 94 053423 10.1103/PhysRevA.94.053423
Komarova K G van den Wildenberg S Remacle F Levine R D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 134001 10.1088/1361-6455/ab84c7
Pupeza I et al 2020 Nature 577 52 59 52-59 10.1038/s41586-019-1850-7
Sulzer P Högner M Raab A-K Fürst L Fill E Gerz D Hofer C Voronina L Pupeza I 2022 Nat. Photonics 16 692 7 692-7
Wu M Chen S Camp S Schafer K J Gaarde M B 2016 J Phys. B 49 062003 10.1088/0953-4075/49/6/062003
Keefer D Aleotti F Rouxel J R Segatta F Gu B Nenov A Garavelli M Mukamel S 2021 Proc. Natl Acad. Sci. USA 118 e2022037118 10.1073/pnas.2022037118
Rouxel J R Keefer D Mukamel S 2021 Struct. Dyn. 8 014101 10.1063/4.0000043
Cao J Wilson K R 1998 J. Phys. Chem. A 102 9523 30 9523-30 10.1021/jp982054p
Bennett K Kowalewski M Rouxel J R Mukamel S 2018 Proc. Natl Acad. Sci. USA 115 6538 47 6538-47 10.1073/pnas.1805335115
Yang J et al 2018 Science 361 64 10.1126/science.aat0049